ADMISSION TO PhD PROGRAMME (2nd SEMESTER OF SESSION 2015-16)

University will make PhD admission in the following departments/schools as per specialisations mentioned in the following table:

<table>
<thead>
<tr>
<th>DEPARTMENTS</th>
<th>NO. OF SEATS</th>
<th>SPECIALIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOTECHNOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Cancer Genetics</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Plant Biotechnology</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Plant Molecular Biology</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Bio Remediation</td>
</tr>
<tr>
<td>CHEMICAL ENGINEERING</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Polymers (Adsorption)</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Process Modeling & Simulation, RTD Modeling Kinetics</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Heterogeneous Reaction and Catalysis/ Adsorption</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Process Simulation</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Modeling & Simulation, Waste Water Treatment</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Diffusion, Drying, Thin Films Simulation</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Separation Processes</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Thermodynamics Properties of Nano Confined Fluids</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Separation Processes</td>
</tr>
<tr>
<td>CIVIL ENGINEERING</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Water Resources Management, Water Resources Engineering, Contaminant Transport,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dispersion Study</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Hydraulics and Water Resources Engineering</td>
</tr>
<tr>
<td></td>
<td>03</td>
<td>SCC, Use of By-Products in Concrete</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Structural Health Monitoring, Sustainability in RC Structures, Non-Destructive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Testing</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Structural Materials, Repair and Rehabilitation of Structures</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Structural Health Monitoring</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Corrosion Monitoring, Structural Materials</td>
</tr>
<tr>
<td>COMPUTER SCIENCE & ENGINEERING</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Wireless Networks</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Machine Learning, Optimization, Bioinformatics</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Sensor and Ad-hoc Networks</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Cloud Computing, Big Data</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Big Data</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Image Processing, Cellular Automata</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Metaheuristic Techniques, Data Mining and Analysis</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Big Data Mining and Analysis</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Machine Learning</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Information Security, Image Processing</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Theoretical Computer Science</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Networking, Applied Soft Computing</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Network Security, IoT Services</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Machine Learning, NLP, Big Data</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Network Security</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Algorithms, Machine Learning</td>
</tr>
<tr>
<td>ELECTRICAL & INSTRUMENTATION ENGINEERING</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Biomedical & Instrumentation/Cognition</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Power Systems/ Control System/ Head up Display</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Biomedical & Instrumentation</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Power Systems/ Solar System</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Biometrics/Image Processing</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Biomedical Instrumentation/Embedded System</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Power system Optimizaton</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Biomedical Image Processing</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Electronics Devices/ Signal Processing</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Power System/ Renewable Energy/ Micro Grid</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Protection of Power System and Machines</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Digital Image Processing</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Power Generation and Substation Automation/ MEMS Sensors/ Power System</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reliability</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Power Electronics</td>
</tr>
<tr>
<td>Course</td>
<td>Code</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Pattern Recognition/ Machine Learning</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>Speaker Recognition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power System Operation and Control</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>Intelligency System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart Grid/ Renewable Energy Sources</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>Micro-Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomedical Image Processing</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>Control System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomedical Signal and Image Processing</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>Control Systems/ Electrical Derives</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electronics & Communication Engineering

12. Fiber Optical Communication
05. Wireless Communication & Antenna
04. VLSI, Signal Processing, Wireless Communication
02. VLSI Circuit/ System Design
04. Signal & Image Processing, Fractional Transforms
01. Wireless & Signal Processing
07. Wireless Communication
4.5. Video, Image & Signal Processing
02. Wireless Network Security
03. Soft Computing, Adaptive Signal Processing, Blind Source Separation
02. Signal Processing, Speech Processing
03. Wireless Communication & Channel Coding
02. VLSI Design
03. Signal Processing
02. Analog IC Design
2.5. VLSI Interconnects
02. MEMS & Materials, Design & Fabrication
02. Microwave Antenna
03. Soft Computing, Antenna, WSN
03. Image & Signal Processing, Medical Image Processing
03. Microstrip Antenna Design

Mechanical Engineering

02. Particle Technology
02. Medical Robotics, Human-Powered Exoskeletons, Vibrations and Control, Underactuated Manipulators, Redundant Manipulators
02. Incremental Sheet Metal Forming, Manufacturing, Welding, Process Modeling
01. Thermal Engineering Thermal Engineering (Solar Thermal, Heat Transfer, Nanofluids)
03. Advanced Machining, Nanofinishing Based on MR Fluids, Applied Automation
01. Design (Composite Structures/ Finite Element Analysis)
01. Advanced Machining Processes
02. Manufacturing Engg.
01. Materials and Industrial Metallurgy
01. Fluid and Thermal
02. Computational Fluid Dynamics, Rheology, Erosion Wear

Schools

School of Physics & Materials Science

02. Condensed Matter Physics (Experimental)
02. Nonlinear Optics, Photonics
01. Thin Film Solar Cells
02. Computational Physics, Soft Condense Matter Physics

School of Humanities & Social Sciences

02. Cognitive and Experimental Psychology/ Neuropsychology/ Clinical Psychology
02. HR/ General Management Entrepreneurship/ Communication Skills
01. Social Psychology/ Organizational Psychology
05. Economics/ Finance
03. Accounting Finance/ Management
02. Counselling and Development Psychology
02. English Literature
<table>
<thead>
<tr>
<th>SCHOOL OF MATHEMATICS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Fourier Analysis, Fixed Point Theory</td>
<td>02</td>
</tr>
<tr>
<td>01</td>
<td>Operations Research</td>
<td>01</td>
</tr>
<tr>
<td>01</td>
<td>Nonlinear PDEs</td>
<td>01</td>
</tr>
<tr>
<td>01</td>
<td>Number Theory (Enumerative Combinatorics)</td>
<td>01</td>
</tr>
<tr>
<td>01</td>
<td>Solid Mechanics</td>
<td>01</td>
</tr>
<tr>
<td>01</td>
<td>Numerical Analysis</td>
<td>01</td>
</tr>
<tr>
<td>02</td>
<td>Functional Analysis, Fourier Analysis</td>
<td>01</td>
</tr>
<tr>
<td>01</td>
<td>Nonlinear PDEs</td>
<td>01</td>
</tr>
<tr>
<td>01</td>
<td>Number Theory (Enumerative Combinatorics)</td>
<td>01</td>
</tr>
<tr>
<td>01</td>
<td>Solid Mechanics</td>
<td>01</td>
</tr>
<tr>
<td>01</td>
<td>Numerical Analysis</td>
<td>01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCHOOL OF CHEMISTRY & BIOCHEMISTRY</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Nano Catalysis</td>
<td>01</td>
</tr>
<tr>
<td>01</td>
<td>Heterogeneous Catalysis</td>
<td>02</td>
</tr>
<tr>
<td>01</td>
<td>Biocatalysis</td>
<td>03</td>
</tr>
<tr>
<td>02</td>
<td>Organic Synthesis</td>
<td>03</td>
</tr>
<tr>
<td>03</td>
<td>Biophysical & Bioinorganic Chemistry</td>
<td>02</td>
</tr>
<tr>
<td>03</td>
<td>Synthesis, Applications and Surface Modification of Advanced Functional Nanomaterials</td>
<td>01</td>
</tr>
<tr>
<td>03</td>
<td>Biochemistry, Cell Biology, Immunology and Drug Development</td>
<td>02</td>
</tr>
<tr>
<td>01</td>
<td>Environmental Technology & Solid Waste</td>
<td>02</td>
</tr>
<tr>
<td>01</td>
<td>Environmental Biotech & Solid Waste</td>
<td>01</td>
</tr>
<tr>
<td>02</td>
<td>Environmental Technology & Environmental Management</td>
<td>01</td>
</tr>
</tbody>
</table>

The policy of UGC guidelines regarding reservation of seats for SC/ST and PH candidates shall be followed.

ELIGIBILITY

(i) A candidate seeking admission to the degree of Doctor of Philosophy must have obtained ME/MTech/MPhil/MCA/MSc/MA/MBA/CA or equivalent with minimum CGPA of 6.00 on a 10-point scale or 55% marks in aggregate where marks are awarded or NET (UGC/CSIR) qualified.

(ii) Candidates with BE/BTech degree or equivalent with excellent academic record (minimum CGPA of 9.00 on 10-point scale or 80% marks in aggregate) may be considered for admission.

Relaxation in CGPA to 7.00 on a 10-point scale or in marks to 65% for the minimum eligibility conditions may be permitted for candidates with a BE / BTech degree or equivalent who have a minimum of 3 years of professional and/or research experience in the area in which the admission is sought. However, candidates admitted with BE/BTech or equivalent qualification will be admitted for PhD after successful completion of eight Masters level courses as suggested by the PhD Admission Committee of concerned Department/School, within a period of two years from the date of admission. A minimum CGPA of 6.00 on a 10-point scale should be earned in the courses prescribed by the concerned Department/School.

(iii) Part-time studies leading to PhD degree are permitted for professionally employed personnel. Part-time studies leading to PhD shall also be permitted to persons working in Institutions with which a Memorandum of Understanding has been signed for research purposes. Such a candidate must be in employment at the time of admission and be engaged in professional work in the area to which admission is sought.

(iv) Admission of a PhD candidate in a department/school other than his/her basic background: Suitability of a candidate is the purview of admission committee, if a
candidate qualifies the test and interview then he/she should be allowed to pursue PhD Program. However, the admission committee may recommend additional courses for the candidate to clear.

(v) Candidates shall be admitted on the basis of merit of Entrance Test and Interview to be conducted by the University. The candidates who secure minimum of 20% marks in the written exam shall only be called for Interview. During interview, a candidate is required to indicate area of research.

Relaxation for appearing in the Entrance Test may be given by the University to those candidates who have qualified UGC/CSIR (JRF).

(vi) Every admitted candidate shall have to do course work for a minimum of one semester. The course work shall include at least three courses, namely, a course on research methodology (may include quantitative methods and computer Applications) or a course proposed by the Admission Committee (for those who have studied a similar course on Research Methodology at PG level), a professional course (if not offered by any Department/ School, its syllabus to be proposed by the allocated supervisor and approved by DoAA) and a seminar (Relevant in the area of research). Minimum credits for the course work shall be 11 including a seminar of 4 credits. The process of registration in the course work, examination, evaluation and grading shall be same as followed for UG/PG programmes.

Only those candidates who successfully complete the course work within one year of admission and with a minimum CGPA of 6.00 on 10.00-point scale shall be registered in the PhD programme.

Every candidate will be required to submit research proposal, duly recommended by the Supervisor(s), after successful completion of the course work (December 31 shall be taken as date of completion of course work for odd semester and June 30 shall be taken as date of completion for even semester). The minimum time period to submit the research proposal shall be one semester from the date of admission and maximum time allowed to submit the research proposal shall be one year from the date of admission.

Research proposal will be submitted to the concerned Head of the Department/School. In case of non-submission of proposal within one year, DoRSP on the recommendations of the Supervisor and Head of the Department/School may grant an extension for a maximum period of six months.

If the candidate fails to submit the proposal even during the extended period, her/his admission will be cancelled. In case the proposal is rejected by the URB, she may resubmit it within next six months starting the date of meeting of URB failing which her/his admission will be cancelled.

Notes:

(a) Part-time candidates are required to submit the “No Objection Certificate” from their parent organization/department/employer stating that the candidate is permitted to pursue studies on a part-time basis and that the candidate’s official duties permit her/him to devote sufficient time for course work and research.

(b) In case of FN candidates, Research VISA endorsed to TU is required.

1. GENERAL INFORMATION

TU offers PhD programme in almost all specializations of Engineering, Technology, Management and Sciences in the following Departments/Schools of the University (currently around 644 PhD candidates are working for their PhD degrees in the University).
DEPARTMENTS

Biotechnology Department
Agro-Biotechnology, Plant Biotechnology, Bioremediation, Microbial Ecology, Food Technology, Food Process and Safety, Plant Microbe Interaction, Tissue Culture, Sustainable Agriculture, Bioinformatics, Areas of Animal Biotechnology & Drug Discovery and Microbial Concrete.

Chemical Engineering Department

Civil Engineering Department

Computer Science & Engineering Department

Electrical & Instrumentation Engineering Department

Electronics & Communication Engineering Department

Mechanical Engineering Department

SCHOOLS

School of Physics & Materials Science

School of Humanities and Social Sciences

School of Mathematics

School of Chemistry & Biochemistry

School of Energy and Environment
Environmental Technology & Management, Environmental Engineering, and Bioremediation.

2. The application form along with attested copies of certificates must be submitted to the “Incharge Admission Cell” on or before the specified dates for the even semester. Incomplete application forms and those received after the prescribed date will not be
entertained under any circumstances. No correspondence/enquiry from such candidates shall be entertained.

No separate intimation will be sent regarding conduct of exam, Interview and start of session. Application form must accompany:
(i) Attested copies of the certificates of the examinations passed.
(ii) One passport size photograph pasted on the application form in the space provided for the purpose.

3. DURATION
The student shall submit his/her thesis to the Registrar within five years but not earlier than 2.5 years in case of regular and 3.5 years in case of part time student from the date of his/her admission.

4. TEACHING ASSOCIATESHIP
i Eligibility
The associateship may be granted to candidates out of those admitted to the PhD (Regular) programme. Only those candidates will be considered who have obtained minimum CGPA of 6.75 (10.00 point scale) or first division in their qualifying examination. Teaching associateship is also available to full time PhD students admitted to engineering department having B.E/B.Tech qualification under TEQIP (subject to availability of funds).

ii Number and Values of the Associateship
Teaching Associateship are allocated to each Department/School depending upon their requirement. Teaching Associateships upto maximum of 104 in number shall be given to the regular PhD students.

Emoluments for Teaching Associateship for Category ‘A’ candidates will be ₹ 24,000/- per month (including contingency) who are having ME/M.Tech degree and ₹ 25,000/- per month (including contingency) for candidates having MSc degree (with NET/GATE) and BE/BTech degree (with GATE). For Category ‘B’ candidates who are having MSc degree (without NET) and BE/BTech degree (without GATE), emoluments will be ₹ 18,000/- per month (including contingency) or as approved from time to time by the University.

Suitable accommodation may be provided, if available in the University on rental basis.

iii Duration
The associateship will be tenable for one semester at the first instance from the date of selection, to be renewed after every semester as per requirement of the Deptt. /School.

iv General Conditions
A scholar who has been selected for the award will be given 8-12 hours of teaching load per week.

A scholar who has been selected for associateship shall not be eligible for any other fellowship from the University or from any other source.

A scholar who has been selected for associateship shall be liable to pay tuition fee and other dues as prescribed by the University from time to time.

Last date for filling the online form: December 1, 2015

GENERAL INFORMATION REGARDING PhD ENTRANCE TEST

- The duration of test shall be 1½ hours.
- It will be offline mode.
- Entrance exam will contain 75 questions.
The questions will be of MCQ type. The total marks of the test will be 75. There will be a negative marking for every wrong answer and \(\frac{1}{4} \) marks will be deducted for every wrong answer. The test will be taken in the concerned subject area. Cut off marks in the entrance test will be 20% (15% for SC/ST) of the total marks.

PhD Admission Schedule

<table>
<thead>
<tr>
<th>Departments</th>
<th>Date of offline Entrance Test</th>
<th>Time of offline Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotechnology</td>
<td>December 21, 2015</td>
<td>9.00 AM</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>December 21, 2015</td>
<td>11.00 AM</td>
</tr>
<tr>
<td>Computer Science and Engineering</td>
<td>December 21, 2015</td>
<td>11.00 AM</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>December 21, 2015</td>
<td>1.00 PM</td>
</tr>
<tr>
<td>Electrical & Instrumentation Engineering</td>
<td>December 21, 2015</td>
<td>1.00 PM</td>
</tr>
<tr>
<td>Electronics & Communication Engineering</td>
<td>December 21, 2015</td>
<td>3.00 PM</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>December 22, 2015</td>
<td>9.00 AM</td>
</tr>
<tr>
<td>School of Physics & Materials Science</td>
<td>December 22, 2015</td>
<td>11.00 AM</td>
</tr>
<tr>
<td>School of Humanities & Social Sciences</td>
<td>December 22, 2015</td>
<td>1.00 PM</td>
</tr>
<tr>
<td>School of Mathematics</td>
<td>December 22, 2015</td>
<td>1.00 PM</td>
</tr>
<tr>
<td>School of Energy and Environment</td>
<td>December 22, 2015</td>
<td>1.00 PM</td>
</tr>
<tr>
<td>School of Chemistry & Biochemistry</td>
<td>December 22, 2015</td>
<td>3.00 PM</td>
</tr>
</tbody>
</table>

Declaration of the Result: January 4, 2016
Date of interview for PhD: January 8, 2016
Admission notification and deposit of fee for PhD program: January 11-15, 2016

PhD Entrance Examination Syllabus

1. **DEPARTMENT OF BIOTECHNOLOGY**
 - **Mental ability and aptitude, research aptitude, biostatistics and biomathematics:** Algebra, trigonometry, determinants and matrices, coordinate geometry, differential and integral calculus, Measures of central tendencies and dispersion, probability and distributions, hypothesis testing, Z, t, two sample test, ANOVA, Tukey test, non-parametric tests, chi-square test, correlation and regression
 - **Microbiology:** Classification of microorganisms, microbial growth and nutrition, microbial physiology, preservation and control of microorganisms, microbial diseases, microbial genetics
 - **Genetics:** Mendelian genetics, patterns of inheritance – incomplete dominance, multiple alleles, co-dominance, lethal genes, polygenic inheritance, sex linked inheritance, cell division, chromosomal structure and genetic material
 - **Biochemistry:** Biomolecules- structure and function, intra- and intermolecular forces, bioenergetics, biochemical equilibria, signal transduction and regulation, metabolism of carbohydrates, lipids, proteins and nucleic acids and biochemical techniques
 - **Molecular biology and genetic engineering:** DNA replication in prokaryotes and eukaryotes, DNA damage and repair, recombination, Transcription and translation in prokaryotes and eukaryotes, RNA processing, genetic code, post-translational modifications, transfer of genetic material in microorganism, gene silencing, oncogenes, genetic disorders, apoptosis, DNA modifying enzymes, molecular cloning, cloning &
expression vectors, genomic & cDNA libraries, recombinant gene expression & its applications and molecular techniques

Plant biotechnology: Plant tissue culture, micropropagation, production of haploid plants, embryo culture, soma clonal variations, germplasm conservation, manipulation of phenotypic traits by recombinant DNA technology, plant vectors and methods of DNA transfer, generation of transgenic plants and their applications

Animal biotechnology and Immunology: Mammalian cell culture, culturing types, types of media, viability assay, contamination and cryopreservation, transgenic animals and animal cloning, gene therapy, stem cells and their application, Innate and adaptive immunity, Cells of immune systems, humoral and cell mediated immunity, compliment systems, cytokines, MHC, antigen & antibody and their interactions, immunological techniques, autoimmunity, hypersensitivity and immunodeficiency, immune response to infectious diseases, cancer and transplantation and vaccines

Bioinformatics: Biological databases, biological sequence formats, pairwise sequence alignment – methods and algorithms, FASTA, BLAST, multiple sequence alignment and phylogenetics, structural bioinformatics, Ramachandran plot, protein secondary and tertiary structure prediction methods and algorithms and homology modeling

Environmental Biotechnology: Ecology, environmental pollution and control, bioprocesses in controlling pollution, biomonitoring and biosensors

Enzymology and bioprocess technology: Enzyme classification and nomenclature, enzyme kinetics & mechanism, activators and inhibitors, regulation of enzyme activities, sterilization concepts in fermentation, cell growth and kinetics, bioreactor studies, aeration & agitation and downstream processing

II. **DEPARTMENT OF CHEMICAL ENGINEERING**
First and second laws of thermodynamics and their applications, phase equilibria, chemical reaction equilibria; flow through pipes, boundary layers, two phase flow; fluidization and its applications; heat transfer coefficients and equipments; diffusion, absorption, adsorption, distillation, extraction, transport analogies; kinetics of homogeneous reactions, interpretation of kinetic data, residence time distribution, kinetics and reactor design for heterogeneous reactions, water and air pollutants and their treatments, enzyme and microbial growth kinetics, bioreactor analysis

III. **DEPARTMENT OF CIVIL ENGINEERING**

STRUCTURAL ENGINEERING

Mechanics: Bending moment and shear force in statically determinate beams. Simple stress and strain relationship: Stress and strain in two dimensions, principal stresses, stress transformation, Mohr’s circle. Simple bending theory, flexural and shear stresses, unsymmetrical bending, shear centre. Thin walled pressure vessels, uniform torsion, buckling of column, combined and direct bending stresses.

Structural Analysis: Analysis of statically determinate trusses, arches, beams, cables and frames, displacements in statically determinate structures and analysis of statically indeterminate structures by force/ energy methods, analysis by displacement methods (slope deflection and moment distribution methods), influence lines for determinate and indeterminate structures.

Introduction to Dynamic Analysis of Structures: Understand basic concepts related to dynamic analysis of structures. Perform analysis of SDOF and MDOF systems.

Concrete Structures: Concrete Technology: properties of concrete, basics of mix design. Concrete design - basic working stress and limit state design concepts, analysis of ultimate load capacity and design of members subjected to flexure, shear, compression and torsion by limit state methods. Design and reinforcement detailing of building frames. Design and detail RC retaining structures. Basic elements of prestressed concrete, analysis of beam sections at transfer and service loads. Understand the use of supplementary cementing materials as cement replacement in concrete. To design high strength and high performance concretes.

Steel Structures: Analysis and design of tension and compression members, beams and beam columns, column bases. Connections - simple and eccentric, beam-column connections, plate girders and trusses. Plastic analysis of beams and frames. Carry out plastic design of structural elements. Analyse and design industrial buildings and storage structures. Analyse and design structures using light gauge steel and aluminium.

GEOTECHNICAL ENGINEERING
Soil Mechanics: Origin of soils, soil classification, three-phase system, fundamental definitions, relationship and interrelationships, permeability & seepage, effective stress principle, consolidation, compaction, shear strength.

WATER RESOURCES ENGINEERING
Fluid Mechanics and Hydraulics: Properties of fluids, principle of conservation of mass, momentum, energy and corresponding equations, potential flow, applications of momentum and Bernoulli’s equation, laminar and turbulent flow, flow in pipes, pipe networks.

Hydrology: Hydrologic cycle, rainfall, evaporation, infiltration, stage discharge relationships, unit hydrographs, flood estimation, reservoir capacity, reservoir and channel routing. Well hydraulics.

ENVIRONMENTAL ENGINEERING
Water requirements: Quality standards, basic unit processes and operations for water treatment. Drinking water standards, water requirements, basic unit operations and unit processes for surface water treatment, distribution of water. Sewage and sewerage treatment, quantity and characteristics of wastewater. Primary, secondary and tertiary treatment of wastewater, sludge disposal, effluent discharge standards. Domestic wastewater treatment, quantity of characteristics of domestic wastewater, primary and
secondary treatment Unit operations and unit processes of domestic wastewater, sludge disposal.

Air Pollution: Types of pollutants, their sources and impacts, air pollution meteorology, air pollution control, air quality standards and limits.

Municipal Solid Wastes: Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal).

Noise Pollution: Impacts of noise, permissible limits of noise pollution, measurement of noise and control of noise pollution.

TRANSPORTATION ENGINEERING

Highway Planning: Geometric design of highways, testing and specifications of paving materials, design of flexible and rigid pavements.

Traffic Engineering: Traffic characteristics, theory of traffic flow, intersection design, traffic signs and signal design, highway capacity.

SURVEYING

Importance of surveying, principles and classifications, mapping concepts, coordinate system, map projections, measurements of distance and directions, leveling, theodolite traversing, plane table surveying, errors and adjustments, curves.

IV. **COMPUTER SCIENCE AND ENGINEERING DEPARTMENT**

Section A: Total Questions-15

Mathematical and General Aptitude: Discrete structures (sets, graphs, elementary counting and probability), elementary calculus, linear algebra, Calculus, Differential equations, Complex variables, Numerical Methods, Transform, Quantitative and Analytical Reasoning.

Section B: Total Questions-15

Programming Aptitude: Ability to write programs to solve simple problems. Use of elementary data structures such as arrays, lists, stacks, queues, trees. Familiarity with recursion. Ability to reason about programs, loop invariants and assertions.

Section C: Total Questions-45

V. **ELECTRONICS & COMMUNICATION ENGINEERING DEPARTMENT**

Network Theorems: superposition, Thevenin and Norton’s Maximum Power Transfer, Fourier series, time domain analysis of simple RLC circuits, Laplace and Z transforms; frequency domain analysis of RLC circuits. Two port network parameters.

Analog Circuits: Characteristics and equivalent circuits (large and small signal) of diodes, BJTs, JFETs and MOSFETs Simple diode circuits: clipping, clamping, rectifier Biasing and bias stability of transistor and FET amplifiers.

Amplifiers: Single and multistage, Differential, Operational; feedback and power. Analysis of amplifiers; Simple op-amp circuits. Filters, oscillators.

Digital Circuits: Boolean algebra; minimization of Boolean functions; logic gates, Digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinational circuits; arithmetic circuits, Code converters, Multiplexers and decoders. Sequential circuits; Latches and flip-flops, Counters and shift registers.

Waveguides: Modes in rectangular waveguides; Boundary conditions; Cut-Off frequencies; Dispersion relations.

Antennas: Dipole antennas; Antenna arrays; Radiation pattern; Reciprocity theorem; Antenna gain.

VI. Electrical Engineering

Electric Circuits and Fields: Network graph, KCL, KVL, node and mesh analysis, transient response of dc and ac networks; sinusoidal steady-state analysis, resonance, basic filter concepts; ideal current and voltage sources, Thevenin’s, Norton’s and Superposition and Maximum Power Transfer theorems, two-port networks, three phase circuits; Gauss Theorem, electric field and potential due to point, line, plane and spherical charge distributions; Ampere’s and Biot-Savart’s laws; inductance; dielectrics; capacitance.

Signals and Systems: Representation of continuous and discrete-time signals; shifting and scaling operations; linear, time-invariant and causal systems; Fourier series representation of continuous periodic signals; sampling theorem; Fourier, Laplace and Z transforms.

Electrical Machines: Single phase transformer – equivalent circuit, phasor diagram, tests, regulation and efficiency; three phase transformers – connections, parallel operation; auto-transformer; energy conversion principles; DC machines – types, windings, generator characteristics, armature reaction and commutation, starting and speed control of motors; three phase induction motors – principles, types, performance characteristics, starting and speed control; single phase induction motors; synchronous machines – performance, regulation and parallel operation of generators, motor starting, characteristics and applications; servo and stepper motors.

Power Systems: Basic power generation concepts; transmission line models and performance; cable performance, insulation; corona and radio interference; distribution systems; per-unit quantities; bus impedance and admittance matrices; load flow; voltage control; power factor correction; economic operation; symmetrical components; fault analysis; principles of over-current, differential and distance protection; solid state relays and digital protection; circuit breakers; system stability concepts, swing curves and equal area criterion; HVDC transmission and FACTS concepts.

Control Systems: Principles of feedback; transfer function; block diagrams; steady-state errors; Routh and Nyquist techniques; Bode plots; root loci; lag, lead and lead-lag compensation; state space model; state transition matrix, controllability and observability.

Power Electronics and Drives: Semiconductor power diodes, transistors, thyristors, triacs, GTOs, MOSFETs and IGBTs – static characteristics and principles of operation; triggering circuits; phase control rectifiers; bridge converters – fully controlled and half controlled; principles of choppers and inverters; basis concepts of adjustable speed dc and ac drives.

VII. INSTRUMENTATION & CONTROL ENGG.

Transducers, Mechanical Measurement and Industrial Instrumentation: Resistive, Capacitive, Inductive and piezoelectric transducers and their signal conditioning.

VIII. MECHANICAL ENGINEERING DEPARTMENT
- Heat Transfer
- I.C Engines
- Power Plant Engineering
- Automobile Engineering
- Tribology
- Computer Aided Analysis & Design
- Industrial Engineering
- Engineering Materials
- Robotics
- Fluid Mechanics
- Non Traditional Machining
- Vibrations
- Mechatronics
- Automation
- Modeling and Simulation
- Two-phase Flow
- Renewable Energy

IX. SCHOOL OF CHEMISTRY AND BIO-CHEMISTRY

Physical Chemistry:
1. Basic principles and applications of quantum mechanics – hydrogen atom, angular momentum.
2. Variational and perturbational methods.
4. Theoretical treatment of atomic structures and chemical bonding.
5. Chemical applications of group theory.
6. Basic principles and application of spectroscopy – rotational, vibrational, electronic, Raman, ESR, NMR.
7. Chemical thermodynamics.
8. Phase equilibria.
10. Chemical equilibria.
11. Electrochemistry – Nernst equation, electrode kinetics, electrical double layer, Debye-Hückel theory.
15. Solids - structural classification of binary and ternary compounds, diffraction techniques, bonding, thermal, electrical and magnetic properties.
17. Data analysis.

Inorganic Chemistry
1. Chemical periodicity
2. Structure and bonding in homo- and heteronuclear molecules, including shapes of molecules.
4. Chemistry of the main group elements and their compounds. Allotropy, synthesis, bonding and structure.
5. Chemistry of transition elements and coordination compounds – bonding theories, spectral and magnetic properties, reaction mechanisms.
6. Inner transition elements – spectral and magnetic properties, analytical applications.
7. Organometallic compounds - synthesis, bonding and structure, and reactivity. Organometallics in homogenous catalysis.
8. Cages and metal clusters.
11. Physical characterisation of inorganic compounds by IR, Raman, NMR, EPR, Mössbauer, UV-, NQR, MS, electron spectroscopy and microscopic techniques.
12. Nuclear chemistry – nuclear reactions, fission and fusion, radio-analytical techniques and activation analysis.

Organic Chemistry
1. IUPAC nomenclature of organic compounds.
2. Principles of stereochemistry, conformational analysis, isomerism and chirality.
3. Reactive intermediates and organic reaction mechanisms.
5. Pericyclic reactions.
7. Transformations and rearrangements.
10. Oxidation and reduction of functional groups.
12. Chemistry of natural products such as steroids, alkaloids, terpenes, peptides, carbohydrates, nucleic acids and lipids.
14. Chemistry of aromatic and aliphatic heterocyclic compounds.
15. Physical characterisation of organic compounds by IR, UV-, MS, and NMR.

Interdisciplinary Topics
1. Chemistry in nanoscience and technology.
2. Catalysis and green chemistry.
3. Medicinal chemistry.
4. Supramolecular chemistry.
5. Environmental chemistry.

X. SCHOOL OF ENERGY AND ENVIRONMENT

1. For Environment Science and Technology, the entrance examination will be of two sections:
 A. Environment Sciences: Environmental microbiology; Ecology, Environment chemistry; Environment pollution, Environment technologies.
 B. Environment Technology: Environment quality monitoring; Water and wastewater treatment technology I & II (Physico-chemical and Biological); Air pollution control technology; Solids and hazardous waste management.

2. For Energy Technology and Management examination the following syllabus has been framed:
 A. Energy Technology: Energy resources; Conventional energy technology; Fuels and combustion; Solar energy; Biofuels; Heat transfer and Thermodynamics; Fluid mechanics and hydraulics; Wind Energy.

XI. SCHOOL OF HUMANITIES & SOCIAL SCIENCES

Syllabus PhD (Psychology)

Syllabus for PhD (Economics/Management / Finance and Commerce)

Syllabus for PhD (Human Resource Management)

Syllabus for PhD (Communication Skills)

Components of communication /Barriers in communication, Kinds of communication, Communication at Work Place (Office), Importance and benefits of effective communication, Components / Process of communication, The 7 C’s of Effective communication, Writing Skills, Planning and Writing Documents, Business letters, Report writing, Kinds of Reports (Long & Short Reports), Grammar, Style, Punctuation, Practice in Actual Communication
Note: Candidates seeking admission in mathematics are required to attempt any four sections only.

Section – I
Sequences and series of functions, point wise and uniform convergence, Cauchy criterion for uniform convergence, Weierstrass M-test, Abel’s and Dirichlet’s tests for uniform convergence, uniform convergence and continuity, uniform convergence and Riemann-Stieltjes integration, uniform convergence and differentiation, Weierstrass approximation theorem.

Open and closed Sets, Interior, Closure and limit points of a set, Subspaces, Continuous functions on metric spaces, Convergence in a metric space, complete metric spaces, Compact metric spaces, Compactness and uniform continuity.

Definition, Existence and properties of Riemann integral of a bounded function, Darboux theorem, Condition of integrability, Riemann integrability for continuous functions, bounded functions, monotonic function and functions with finite or infinite number of discontinuities (without proof). The integral as the limit of the sums. Properties of Riemann integral, Fundamental theorem of calculus, First Mean value theorems, change of variables, second mean value theorem, Generalized mean value Theorems.

Section – II
Algebra of complex numbers, the complex plane, polynomials, power of series, transcendental functions such as exponential, trigonometric and hyperbolic functions. Analytic functions, Cauchy- Riemann equations. Contour integral, Cauchy’s theorem, Cauchy’s integral formula, Liouville’s theorem, Maximum modulus principle.

Section – III
Groups, Subgroups, Normalizer, Centralizer, Normal subgroups, Quotient groups, Homomorphism, Automorphisms of groups and structure of cyclic groups, Permutation groups, Cayley’s theorem, Conjugate elements, Class equation, Structure theory of groups, Cauchy theorem, Sylow theory and its applications. Special kinds of rings, Subrings and ideals, Algebra of ideals, Homomorphism, Quotient rings, Prime and maximal ideals, Quotient rings, Polynomial rings, Integral domain, Factorization theory in integral domains, Unique factorization domain, Principal ideal domain, Euclidean domain.

Section – IV

Section - V
Existence and Uniqueness of solutions of initial value problems for first-order ordinary differential equations, singular solutions of first-order ODEs. Applications of differential equations to vibrations of mass on a spring, Resonance phenomenon. General theory of
homogenous and non-homogeneous linear ODEs, variation of parameters, Sturm - Liouville boundary value problem, Green’s function.

Lagrange and Charpit methods for solving first order PDEs, Cauchy problem for first order PDEs. Classification of second order PDEs, General solution of higher order PDEs with constant coefficients, Method of separation of variables for Laplace, Heat and Wave equations.

Section – VI

Section – VII

Section – VIII
Tangential and normal accelerations, Simple harmonic motion, projectile motion, Central forces, Apses and apsidal distances, Kepler’s laws of planetary motion, Simple pendulum, Motion in a resisting medium, Euler’s dynamical equations for the motion of a rigid body about an axis. Constrained motion, D’Alemberts principle, Variational Principle, Lagrange’s equations of motion, Generalised coordinates, cyclic coordinates, Hamilton’s principles, Principles of least action, Hamilton’s equation of motion.

XIII) SCHOOL OF PHYSICS AND MATERIALS SCIENCE

Section A
(For students having Master’s Degree in Science)

Mathematical Methods of Physics
Vector algebra and vector calculus, Eigenvalues and eigenvectors, Differential equations, Fourier series, Laplace transforms, Elementary probability theory, Binomial, Poisson and normal distribution.

Classical Mechanics
Newton’s laws, Two body Collisions, Rigid body dynamics, Lagrangian and Hamiltonian formalism and equations of motion, Special theory of relativity, Lorentz transformations, Relativistic kinematics and mass energy equivalence.

Electromagnetic Theory
Gauss’s law and its and its applications, Biot-Savart law, Ampere’s theorem, Electromagnetic induction, Maxwell’s equations, Electromagnetic waves in free space, Dielectrics and conductors.

Quantum Mechanics
Wave-particle duality, Schrödinger equation, Particle in a box, Tunneling through a barrier, Heisenberg uncertainty principle, Angular momentum algebra, Addition of angular momenta, Pauli exclusion principle.
Statistical Physics
Micro-canonical, canonical and grand-canonical ensembles and partition functions, Classical and quantum statistics, Blackbody radiation and Planck's distribution law.

Electronics
Semiconductor devices (diodes, junctions, transistors, field effect devices), Solar cells, Photo-detectors, LEDs, Operational amplifiers, Digital techniques and application, A/D and D/A converters.

Condensed Matter Physics
Bravais lattices, Reciprocal lattice, Diffraction, Bonding of solids, Electrical and thermal conductivity, Hall effect, Band theory of solids: metals, insulators and semiconductors, Superconductivity: type-I and type-II superconductors, Defects and dislocations.

Nuclear and Particle Physics
Basic nuclear properties: size, shape and charge distribution, spin and parity, Binding energy, Semi-empirical mass formula, Liquid drop model, Shell Model, Nature of the nuclear force, Form of nucleon-nucleon potential. Ideas of alpha, beta and gamma decays and their selection rules, fusion and fission, Nuclear reactions, Classification of fundamental forces, Elementary particles and their quantum numbers (charge, spin, parity, isospin, strangeness), Quark model, Baryons and Mesons.

Section B
(For students having Master's Degree in Engineering)

Fundamentals of Materials Science:
Crystalline and non-crystalline materials; Crystal structure, Miller Indices, crystal planes and directions; Chemical bonds; Crystal imperfections, defect structure, vacancies and substitutional impurities, dislocations, twin, tilt and grain boundaries; Diffusion, laws of diffusion and their kinetics; Phase rule and Phase diagrams, laws of thermodynamics, stability and meta-stability, solid solutions, Hume-Rothery rules, Unary and binary systems, Isomorphous and eutectic systems, ternary system, cooling curve, zone refining.

Materials Processing:
Solidification from liquid and vapor Phase: Nucleation and growth, homogeneous and heterogeneous nucleation, development of micro structure, super cooling, casting techniques; Forming processes: fundamentals of metal forming, hot working process; rolling, forging, extrusion, piercing, cold working; bending, shearing, sizing; Metals Processing; welding, brazing, and soldering; Ceramic Processing: Synthesis of ceramic powders, powder compaction, Extrusion, Injection moldings, Slip casting, Solid state and liquid phase sintering.
Solid State and Vapor Phase Processing: Solid state reactions: Calcinations and sintering, Kinematics of solid state reaction, Solid state and liquid phase sintering, Vapor-phase reactions; Sol-Gel Processing, Hydrolysis, Condensation and gelation, Aging, Drying of gels; Hypercritical drying.

Properties of Materials:
Conducting and Resistor Materials: Conducting and resister materials, Coefficient of thermal expansion, Matthiessen and Nordheim rules for alloys and their engineering application.
Semiconductors: Semiconducting materials, Crystal and compound semiconductors their properties and applications.
Magnetic Materials: Magnetic materials, Soft and hard magnetic materials their properties and applications.

Characterization of Materials:
Optical Microscopy, Stereomicroscopy; TEM; SEM; XRD; Thermogravimetric analysis; Differential thermal analysis; Differential Scanning calorimetry; Thermo-mechanical analysis and dilatometry; Tensile testing, Hardness testing, Impact testing, Fatigue testing, Creep testing, Torsion testing; Non-destructive Testing: Magnetic particle testing, Eddy current testing, Radiography, Ultrasonic testing, Thermography, In-situ metallography

Advanced Materials:
Nanomaterials: Quantum Size Effect, Idea of quantum well, dot and wire, Fullerenes, Nanotubes and nanostructured carbon coatings; Ferrites and piezoelectric materials and their applications; Electro-ceramics: Electronic and ionic conductivity, Ceramic semiconductors, Actuators, Capacitors and fibers.