Structure of Post Graduate
(M.E. Structural Engineering)

THAPAR INSTITUTE OF ENGINEERING & TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
PATIALA, PUNJAB, INDIA
Curriculum Development – Guiding Principles

The statutory bodies of the University, the Senate or the Planning and Monitoring Board oversee the design and development process so that the activity is carried out in a planned manner. The detailed planning for this activity is the responsibility of the Department Head. The systematic process of design and development includes the activities & sub activities including techniques & organizational interfaces and the time frame for completion of various activities. The plans are updated, as the instructional design evolves.

The design and development process generally begins with a need analysis report which comprises of (i) Stated needs (ii) Implied needs (iii) Overall goals of Instructions (iv) Relevant standards i.e. AICTE and UGC guidelines and Curricula of Entrance Tests like Indian Engineering Services (IES) and Graduate Aptitude Test for Engineers (GATE), etc. and (v) General characteristics of target population.

Organizational and Technical interfaces between different faculty and external expert groups providing input to the instructional design are defined, committees are constituted and their reports are documented. Faculty members from different disciplines connected with the design & development activity are associated with the process. The updation/restructuring is carried out as the design process progresses. Clear responsibilities are assigned and effective communication is ensured.

The requirements of instructional design are determined and recorded. For instructional design, the input is taken from various sources. Input requirements are clearly understood and reconciled. The design input may come from:

- Need analysis & Reviews.
- Recommendations from
 - Faculty & senior management
 - Employers and industry
 - Alumni
 - Regulatory Bodies
- Success/failure reports of similar courses & programs.
- Published literature relevant to programs.
- Boundary condition w.r.t GATE, IES, IAS curricula etc.

The general steps followed in curriculum development are as under:

- The need for starting a new programme or course(s) may arise from interaction with Industry, Faculty, Students, Alumni or PMB/Senate/BOG, UGC/AICTE etc.
- The idea of proposed programme is discussed in the HODs’ meeting and if found appropriate, the Head of concerned department is asked to put up a proper proposal. A sub-committee of internal/external member(s) may sometimes be formed for making the feasibility and viability analysis.
- The DAAC (on the basis of recommendations of sub-committee, wherever required) does the need analysis and prepares the proposal for approval from Board of Studies (BOS).
• The BOS after deliberating on the proposal may make the desired modifications and then send the proposal to DOAA for consideration in SUGC/SPGC, along with the duly filled checklists.
• The proposal is put up for consideration to SUGC/SPGC and upon its approval the recommendations may be sent to the Senate and PMB.
• After the Senate approval, the proposal may be sent to concerned Department/School through academic section for allocation of appropriate course codes OR if required it is sent to AICTE/UGC for approval and the status is put up in the forthcoming meeting of BOG.
• Once approved, it is implemented by the concerned Department/School after allocation of proper course code by the academic section.

The employability, innovation and research in curriculum design and development is ensured by:

• Involvement of industry professionals in curriculum development
• Benchmarking exercises to extract customers (employer’s) requirements
• Mandatory project semester in Industry for all UG and some PG students
• Synergizing curriculum with industry practices and needs

The curriculum design and development for all programs is done at least once every four years to ensure continuing suitability, adequacy and effectiveness in satisfying the requirements and the vision, mission and quality policy of the University. The design process includes assessing opportunities for improvement and the need for ensuring suitable employability, innovation and research (more applicable to postgraduate programs). The process invites formal inputs from all stake holders and generally includes the following sources:

• Action taken report on the previous reviews and external accreditation reports (NAAC, NBA-AICTE)
• Results of student’s performance in various examinations
• Result of Students Reaction Survey
• Feedback from
 - Industry,
 - Alumni,
 - Participating organizations in campus placement and other concerned sources
• Details of corrective/preventive actions
• Improvement programs suggested/recommended
• Training programs launched
• Review of mission and quality policy
The process of determining solutions to satisfy the identified needs is laid down and documented. Instructions are designed by incorporating these solutions. The analysis and mappings are recorded. The design output at this stage is taken as the initial design for subsequent reviews. The output of instructional design & development is documented in the form of a report named “Curriculum and Scheme of Courses”. Through various reviews and verifications, it is ensured that the design output meets the design input requirements.

The design output report includes:

- The types and levels of skill and knowledge to be imparted
- Program Educational Objectives; Student Outcomes
- Course Learning Outcomes
- Scheme of courses and the detailed syllabi
- Assessment and evaluation.

The output documents like curriculum and instructional strategies are reviewed and approved before release at various levels and stages.

Reviews are conducted at defined stages of the curriculum Design, in which faculty members from the concerned area as well as experts from amongst the peer group from within and/or outside the University are associated. Records of the reviews are maintained. Based on the reviews, the curriculum is updated.

New/revised curriculum and instructional design is made applicable to the prospective students. The curriculum is validated in the initial stages of its introduction by taking a feedback from students and faculty members regarding the effectiveness and applicability of the curriculum, with regard to the documented needs. Necessary changes, if required, are made to ensure that the design conforms to defined needs of the students. Wherever required, additional instructional sessions and allied inputs are arranged for students/participants.
Some Broad Guidelines

Undergraduate Programs

Undergraduate engineering students are taught a series of courses in basic sciences to develop understanding of scientific principles and methods, analytical ability and rigor. These courses are followed by courses in engineering sciences to provide a smooth transition from basic sciences to professional engineering courses. A series of courses in technical arts are designed to develop engineering skills through training in engineering drawing, measurements, computing skills, manufacturing technology and effective communication. The professional courses in the chosen field of specialization are meant to develop creative abilities for the application of basic and engineering sciences to engineering problems involving planning, design, manufacturing, maintenance and research and development. In addition, courses in humanities and social sciences are incorporated to develop appreciation of the impact of science and technology on society. The undergraduate curriculum consists of two main components i.e. core courses and professional courses. The core courses lay emphasis on concepts and principles. It involves teaching of subjects in Basic Sciences, Humanities and Social Sciences and Engineering Science. Attention is also paid to develop communication skills in English language - the medium of instructions. The Professional courses lay emphasis on system analysis, design, manufacturing and professional practice. There is an in-built flexibility to encourage students to specialize in streams of their choice through a system of professional and free electives. The University strives to foster among its students a strong desire and capacity for continuous learning as well as self-appraisal to develop sterling human & professional qualities and a strong sense of service to society through designed, curricular, co-curricular activities and congenial campus environment.

Post-graduate Programs

MASTER OF ENGINEERING/TECHNOLOGY (M.E./M.Tech.)

The University in offering various M.E./M.Tech. programmes has uniformly maintained the basic structure and philosophy of the post-graduate education in engineering in the country. All these programmes, regular or part-time, have their course work classified into two major categories: Core Courses and Elective Courses. The core courses are aimed at imparting knowledge of the relevant basics analytical-tools & techniques necessary to build-up on them elective (professional) courses. Core courses of a particular programme are compulsory for all the students registered in that programme. Elective courses are of professional nature. To be eligible for a degree, a student must complete requisite number of core and elective courses. However, to bring in flexibility a wide choice of electives is offered to the students in order to make their training broad based. Presentation of a Seminar and a project in addition to the course work and further carrying out a thesis/dissertation are necessary components of post-graduate degree. The seminar and project should be on a topic relevant to the area of study, presenting the state-of-art work done on the subject. The literature survey conducted during the preparation of the seminar should highlight the areas for further research work on the subject. The problem taken up for the thesis/dissertation should be as far as possible on the work done for the seminar.
Both the seminar and thesis/dissertation are submitted in bound form and are presented during their respective evaluation. In case a student fails to undertake, complete & clear thesis work and completes seminar only he will be eligible for award of Post-graduate diploma only.

MASTER OF COMPUTER APPLICATIONS (M.C.A.)

The MCA programme aims to train and produce much needed human resource for software industry as increasing applications of computers in almost all areas of human endeavour has led to a vibrant software industry with concurrent rapid technological changes. The programme is spread over a period of three years consisting of six semesters. The students study courses for five semesters in the University and carry out a Software Development Project (SDP) in the sixth semester in reputed national/multinational companies. The graduates of this programme are absorbed as software professionals, solution developers and system analysts in leading national/multinational companies and other industrial/service organizations working in the area of Information Technology (IT).

MASTER OF SCIENCE (M.Sc.)

M.Sc. programmes aims to impart application oriented education in the respective area with an integrated approach so as to turn out professionals who will have easy absorbability in industry as well as self-employment skills. The course curriculum has been structured to impart education in the areas desired by the industry as well as local needs. The programme is spread over four semesters which include teaching of both core courses as well as elective courses for first two semesters, a project in the third semester and a dissertation in the final semester.

DOCTORAL PROGRAMME

High caliber students with demonstrated capability can register themselves for Ph.D. degrees. There is a laid down course work requirement for the Doctoral Degree Programme for candidates registering after obtaining M.E. degree. The provisions in the rules and regulations governing the programme, aim at ensuring high quality of research leading to Ph.D. degree. Ph.D. programme are offered on both regular and part-time basis. Ph.D. thesis is evaluated by a panel of examiners drawn from the peer group on the topic, both from India and abroad.

The Program Scheme and inter-relationships are shown below:
Post-graduate Program- M.E. (Structural Engg.)

Category

Analytical
- PCE101, PCE102, PCE202, PCE203, PCE204, PCE211, PCE212

Design
- PCE103, PCE202, PCE203, PCE211, PCE212, PCE213

Mathematical and computational
- PCL105, PCE201

Materials
- PCE104

Project and seminar
- NA

Dissertation
- NA

I Year

II Year

PCE321, PCE322, PCE323

PCE301, PCE322, PCE323

NA

NA

PCE391, PCE392

PCE091
M.E. STRUCTURAL ENGINEERING
SEMESTER-I

<table>
<thead>
<tr>
<th>SR. NO.</th>
<th>COURSE NO.</th>
<th>TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCE101</td>
<td>ADVANCED STRUCTURAL ANALYSIS</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>PCE102</td>
<td>ADVANCED SOLID MECHANICS</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>PCE103</td>
<td>ADVANCED STRUCTURAL DESIGN</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>PCL105</td>
<td>STATISTICAL METHODS AND ALGORITHM</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4.0</td>
</tr>
<tr>
<td>5</td>
<td>PCE104</td>
<td>STRUCTURAL MATERIALS</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>15</td>
<td>8</td>
<td>2</td>
<td>20.0</td>
</tr>
</tbody>
</table>

SEMESTER-II

<table>
<thead>
<tr>
<th>SR. NO.</th>
<th>COURSE NO.</th>
<th>TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCE201</td>
<td>FINITE ELEMENT METHODS IN STRUCTURAL ANALYSIS</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>PCE202</td>
<td>PRE-STRESSED CONCRETE</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>PCE203</td>
<td>PLATES AND SHELLS</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>PCE204</td>
<td>STRUCTURAL DYNAMICS</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>ELECTIVE – I</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>15</td>
<td>10</td>
<td>0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

91st Senate approved Courses Scheme & Syllabus for ME-Structures (2017)
SEMESTER-III

<table>
<thead>
<tr>
<th>SR. NO.</th>
<th>COURSE NO.</th>
<th>TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCE301</td>
<td>EARTHQUAKE RESISTANT DESIGN OF STRUCTURES</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>ELECTIVE – II</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>PCE391</td>
<td>MINOR DESIGN PROJECT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>PCE 392</td>
<td>SEMINAR</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>4.0</td>
</tr>
<tr>
<td>5</td>
<td>PCE091</td>
<td>DISSERTATION (STARTS)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>06</td>
<td>04</td>
<td>0</td>
<td>16.0</td>
</tr>
</tbody>
</table>

SEMESTER-IV

<table>
<thead>
<tr>
<th>SR. NO.</th>
<th>COURSE NO.</th>
<th>TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCE091</td>
<td>DISSERTATION (CONTD..)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16.0</td>
</tr>
</tbody>
</table>

TOTAL CREDITS: 72.0
LIST OF ELECTIVES

ELECTIVE – I

<table>
<thead>
<tr>
<th>SR. NO.</th>
<th>COURSE NO.</th>
<th>TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCE211</td>
<td>ADVANCED BRIDGE DESIGN</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>PCE212</td>
<td>TALL STRUCTURES</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>PCE213</td>
<td>WIND EFFECT ON STRUCTURES</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

ELECTIVE – II

<table>
<thead>
<tr>
<th>SR. NO.</th>
<th>COURSE NO.</th>
<th>TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCE321</td>
<td>ADVANCED FOUNDATION ENGINEERING</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>PCE322</td>
<td>RELIABILITY-BASED DESIGN</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>PCE323</td>
<td>INDUSTRIAL STRUCTURES</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Course Objectives: To analyze structural engineering systems by various approaches

Flexibility Method (Systems Approach): Flexibility coefficients, Basis of the method, Application to various types of structures.

Introduction to Element Approach: Member stiffness matrix, Local or Member co-ordinate system, Global or Structural co-ordinate system, Rotation of axes etc, Structure stiffness matrix.

Structural Stability Analysis: Elastic Instability, Introduction to stability problem, Energy methods, buckling of axially loaded members for different end conditions, Concept of effective length, approximate techniques, Stability analysis of beam-column and frames.

Plastic Analysis: Concept of Limit load analysis, Upper and lower bonds, Plastic analysis of beams and multi-storey frames using mechanism method.

Non Linear Analysis: Introduction to geometric and material non-linearity.

Course Learning Outcomes (CLO): The students will be able to:
• develop the stiffness matrix of the structures and analyze them using displacement methods
• develop the flexibility matrix of the structures and analyze them using force methods
• perform plastic analysis of various structures
• carry out stability analysis of columns and beam-columns for various end conditions

Text Books:

Reference Books:

91st Senate approved Courses Scheme & Syllabus for ME-Structures (2017)
Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>EST</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Sessionals (May include assignments/quizzes)</td>
<td>25</td>
</tr>
</tbody>
</table>
PCE 102 ADVANCED SOLID MECHANICS

Course Objectives: To analyse the behaviour of a material in elastic and plastic stage

Basic Theory: Concept of continuum, Vector and Tensor analysis.

Elasticity: Stress tensor and transformation, Equilibrium conditions, Simple state of stress, Strain displacement relations, strain tensors and its transformation, Compatibility conditions, Constitutive relations, Energy principles, Problems of linear elasticity- basic equation, Boundary value problems, Solution of basic equation and Equation of plane problems.

Visco-elasticity: Visco-elastic material, Stress strain relation, Various models, Creep and Relaxation, Compliance and Modulus of mechanical models, Navier’s equation.

Course Learning Outcomes (CLO): The students will be able to:
- develop stress and strain tensors and perform transformations
- analyse stress-strain relationships for materials in elastic state.
- solve problems of linear elasticity using boundary value concept
- analyse problems of plasticity and behaviour of visco-elastic materials using various models

Text Books:

Reference Books:

Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>EST</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Sessionals (May include assignments/quizzes)</td>
<td>25</td>
</tr>
</tbody>
</table>

91st Senate approved Courses Scheme & Syllabus for ME-Structures (2017)
Course Objectives: To design the specialized RCC structures

Retaining Walls: Review of design of cantilever type retaining walls, Design of counterfort retaining walls.

Special Structural Elements: Domes, Deep Beams, Brackets or Corbels, Grid floor systems.

Flats Slabs: Advantages and disadvantages of flat Slabs, Action of Flat Slab, Preliminary design of flat slabs, Basic action of two-way slab, Determination of minimum thickness of slab, Direct Design Method, Equivalent frame analysis of flat slabs.

Yield Line Theory: Introduction, Assumptions, Location of yield lines, Methods of Analysis, Analysis of one-way and two-way slabs.

Course Learning Outcomes (CLO): The students will be able to:
- design and carry out the reinforcement detailing for different components of building frames.
- design and detail RC retaining walls.
- design special RC elements such as domes, deep beams, corbels and grid floors.
- approximate design and design as per is method of flat slabs
- analysis of slabs using yield line theory

Text Books:

Reference Books:

Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>EST</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Sessionals (May include assignments/quizzes)</td>
<td>25</td>
</tr>
</tbody>
</table>

91st Senate approved Courses Scheme & Syllabus for ME-Structures (2017)

Analysis of variance: One Way Classification: ANOVA for fixed effect model, ANOVA for Random Effect Model, Two-way Classification (one observation per cell): ANOVA for fixed effect model, ANOVA for Random Effect Model.

Course Learning Outcomes (CLO): The students will be able to:

- Basic understanding of probability distributions and statistical data analysis techniques.
- Know the properties and characteristics of Markov Chain Model
- Understand data classification techniques using fixed effect and random effect models
- Understand time series data analysis

PCL105: STATISTICAL METHODS AND ALGORITHMS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

91st Senate approved Courses Scheme & Syllabus for ME-Structures (2017)
Recommended Books

1. Medhi, J., Stochastic Processes, New Age International
2. Montgomery, Introduction to Statistical Quality Control, John Wiley and Sons

Evaluation Scheme:

<table>
<thead>
<tr>
<th>S No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MST</td>
<td>20</td>
</tr>
<tr>
<td>2.</td>
<td>EST</td>
<td>40</td>
</tr>
<tr>
<td>3.</td>
<td>Sessionals (May include Assignments/ Projects/ Tutorials/ Quizzes/ Lab Evaluations)</td>
<td>40</td>
</tr>
</tbody>
</table>
PCE104 STRUCTURAL MATERIALS

Course Objectives: To understand the mechanism of working of supplementary cementing materials in concrete for production of high performance concrete.

Supplementary Cementing Materials: Types of supplementary cementing materials such as fly ash, silica fume, rice husk ash, and metakaolin; their physical, chemical, mineralogical properties; Effects of these materials on the fresh properties; Strength properties; Durability properties.

Fibre Reinforced Concrete: Definition; types of fibres; Properties of fibres; Factors affecting FRC. Mixing and casting procedure; Composite materials approach; Effect of fibres on the workability, strength and durability of concretes; Applications of different types of fibres.

High Volume Fly Ash Concrete: Definition, Effect of types of fly ash in large quantities on the strength properties of concrete; Durability and abrasion resistance of HVFA; Applications of HVFA.

Self-Compacting Concrete (SCC): Definition, Advantages and disadvantages of SCC; Various mix design procedures; Tests for SCC; Applications for SCC.

High Performance Concrete: Definition of HPC; Material selection and its properties; Parameters for concrete being considered as HPC; Applications of HPC.

Polymer Concrete Composites: Definition; Types of monomers and polymers; Types of polymer concretes and their applications.

Fibre Reinforced Plastics (FRP): Types of FRP, their properties and effects on concrete elements under various loading conditions.

Use of Waste Materials and By-products: Types of waste materials and by-products such as waste glass, scrap tires, waste foundry sand, clean coal ash, etc. Effect of these materials on the various properties of mortar and concrete; Introduction of leachates from waste materials and their analysis.

Behaviour of Concrete at High Temperature: Definition of high temperature; Mechanism of concrete failure at high temperature; Spalling characteristics; Difference in the behaviour of normal concrete, High strength concrete and self-compacting concrete at high temperature.

High Strength steel

Course Learning Outcomes (CLO): The students will be able to:
- conceptualize the use of supplementary cementing materials in concrete
• understand the behaviour of properties of fly ash concrete, fibre reinforced concrete and high performance concrete
• understand the properties of concrete made with waste materials and industrial by-products
• conceptualize new developments in concrete technology in terms of Self compacting concrete, polymer concrete, FRP and concrete at high temperature

Text Books:

Reference Books:

Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>EST</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Sessionals (May include assignments/quizzes)</td>
<td>25</td>
</tr>
</tbody>
</table>
PCE201 FINITE ELEMENT METHODS IN STRUCTURAL ANALYSIS

Course Objectives: To perform finite element analysis of structural elements

Plane Stress and Plane Strain: Introduction, Element characteristics, Assessment of accuracy, Some practical applications.

Axis-Symmetric Stress Analysis: Introduction, Element characteristics, Practical applications, Non-symmetrical loading.

Some Improved Elements in 2-D Problems: Introduction, Quadrilateral element, Characteristics derived from triangular elements, Conforming shape functions for a rectangle, Conforming shape functions for an arbitrary quadrilateral, Triangular element with size nodes.

Nodes Dimensional Stress Analysis: Introduction, Tetrahedral element characteristics, Composite elements with eight nodes, Improved displacement functions an element with eight arbitrary nodes, Tetrahedral element with ten nodes, Introduction to rectangular elements, Quadrilateral elements, Conforming functions for quadrilateral elements, Plate-bending elements, Introduction to non-linear Analysis-Material non-linearity and Performance non-linearity.

Dynamic Analysis of Structures using FEM: Beams and Frames.

Course Learning Outcomes (CLO): The students will be able to:
- develop stiffness matrix for various elements like bar, beam, triangular and quadrilateral elements.
- formulate 2d plane stress, plain strain and axis symmetric problems.
- analyse beams and frames using FEM.
- perform dynamic analysis using FEM.

Text Books:

91st Senate approved Courses Scheme & Syllabus for ME-Structures (2017)
Reference Books:

Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>EST</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Sessionals (May include assignments/quizzes)</td>
<td>25</td>
</tr>
</tbody>
</table>
PCE202 PRE-STRESSED CONCRETE

Course Objectives: To analyze and design the pre-stressed concrete elements.

Review: Definition, Basic Principles, External and internal pre-stressing, Linear and circular pre-stressing, Systems of pre-stressing, Partial pre-stressing, Loss of pre-stress, Materials used, Advantages and disadvantages.

Working Stress Design of Simple Beams: Critical load condition, Permissible stresses, Various suggested methods of design, Dimensionless design variables, Solution of equations, Design Procedure based on flexure, Minimum weight design, Cable layout and profile of tendons, Design by load balancing method, Code provisions.

Pre-stressed Concrete Composite Beams: Allowable stress considerations, Non-dimensional allowable stress equations and their solution, Shrinkage stresses.

Continuous Beams: Two span continuous beams and their analysis, Two span continuous beam with eccentricities at outer supports, Fixed and bending moment, Application of moment distribution method, Design of continuous beams, Continuous beams with variable section.

Pre-stressed Concrete Slabs: One-way and two-way slabs, Beam and slab construction, Flat Slabs.

Shear and Bond in Pre-stressed Concrete: Principal Stresses, Failure due to shear, Combined bending and shear, Bond in pre-tensioned Construction, Bond in post tensioned Construction.

Anchorage in Pre-stressing Classes: Post tensioned Construction, Pre-stressing cable at the centroidal axis, Symmetric multiple cable, Cable with eccentricity, Inclined cables, Spalling and bursting stresses.

Limit State Design: Introduction, Strength limit state in flexure, Limit state of strength in shear, Torsion, Limit state strength of transfer condition, Limit state of serviceability, Durability limit state, Design of short span, medium span and long span beams, Partially pre-stressed Concrete beams.

Miscellaneous Structures: Compression members, Tension members, Pre-stressed Concrete Pavements, Folded plates and Shells, Arches, Dams, Rigid frames, Cylindrical tanks.

Course Learning Outcomes (CLO): The students will be able to:
 • specify and characterize the materials required for prestressed concrete structures and various methods of prestressing
 • calculate losses in pre-stressed members.
 • analyze prestressed concrete members for flexure, shear and torsion

91st Senate approved Courses Scheme & Syllabus for ME-Structures (2017)
• design various prestressed concrete structures for bending, axial tension, bond and bearing.

Text Books:

Reference Books:

Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>EST</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Sessionals (May include assignments/quizzes)</td>
<td>25</td>
</tr>
</tbody>
</table>
Course Objectives: To analyze and design plate and shell structures.

Pure Bending of Plates: Slopes and curvatures, Relations between bending moment and curvature, Strain energy.

Symmetrical Bending of Circular Plates: Differential equation in Polar co-ordinates, Uniformly loaded circular plate with or without hole at the centre and with various edge conditions.

Rectangular Plates: Differential equation of the deflection surface (Small deflection theory only), Fourier Series expansion for various types of loads, Rectangular plates with various loading and edge conditions, Navier’s & Levy’s methods.

Introduction to Shell Structures: Development of shell structures, Advantages and disadvantages of shell structures, Forms of shells, Mathematical equations of various curves connected with shells, I.S. code provisions on folded plates and shell structures.

Analysis of Shell Structures: Structural behaviour of cylindrical shells, Shell dimensions and allowances, Methods of analysis, Approximate analysis covering beam action, Arch action, Membrane action, Design of cylindrical shells by approximate method, Skylight in a shell, Reinforcement details.

Membrane Analysis of Shells: General theory, Derivation of expressions for membrane forces for various directrices, for self weight and snow load, Perturbational stresses for shells with edge beams and shells without edge beams, Effect of concentrated live load, Design by membrane theory.

Folded Plate Structures: General, Various shapes, Advantages and Disadvantages, Structural action of a folded plate structure, Methods of analysis, Deign by any one method.

Introduction to Grid Structures: Various methods for analyzing grids for roofs and bridges.

Course Learning Outcomes (CLO): The students will be able to:
- understand the equilibrium theories for analysis of plates and shell structures in civil engineering applications
- perform critical analysis and design of typical shell structures
- understand various methods for analyzing grids for roofs and bridges.
Text Books:

Reference Books:

Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>EST</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Sessionals (May include assignments/quizzes)</td>
<td>25</td>
</tr>
</tbody>
</table>
Course Objectives: To be able to perform the dynamic analysis of SDOF and MDOF systems.

Basic Principles of Motion: Simple harmonic motion, Fourier transformations, Damping properties, Mass properties, Free and forced vibrations.

Course Learning Outcomes (CLO): The students will be able to:
• understand basic concepts related to dynamic analysis of structures
• perform analysis of SDOF and MDOF
• perform dynamic analysis of various structures using numerical methods
• carry out dynamic analysis of base isolated buildings

Text Books:

Reference Books:
1. A.K. Chopra, Earthquake Engineering Primer
Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>EST</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Sessionals (May include assignments/quizzes)</td>
<td>25</td>
</tr>
</tbody>
</table>
PCE301 EARTHQUAKE RESISTANT DESIGN OF STRUCTURES

Course Objectives: To design earthquake resistant structures as per IS guidelines.

Past Earthquakes: Review of damage in past earthquakes

Earthquake response of structures, Idealization of structures, Response spectrum analysis, Equivalent lateral force concepts, Torsionally coupled systems, Orthogonal effects, Nonlinear, Pushover and Time history analysis.

Philosophy of earthquake resistant design: Ductility, Redundancy & Over strength, Damping, Base Isolation Supplemental Damping, Codal Provisions.

Seismic behaviour of Structures: Concrete structures, Steel and masonry structures, Material properties, Analysis of members under cyclic loads, Detailing provisions, Concepts of structural control.

Course Learning Outcomes (CLO): The students will be able to:
• evaluate seismic forces for various structures as per relevant Indian standards
• design and ductile detailing of structures for seismic resistance as per Indian standards
• apply concepts of repair and rehabilitation of earthquake affected structures

Text Books:

Reference Books:

Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>EST</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Sessionals (May include assignments/quizzes)</td>
<td>25</td>
</tr>
</tbody>
</table>
PCE211 ADVANCED BRIDGE DESIGN

Course Objectives: To analyze and design various types of bridges.

General: Bridge System, Considerations in alignment, Planning, Economic consideration, Aesthetics and selection of type of bridge (Review).

Super Structure Analysis: Bridge deck analysis using different methods, Load distribution theories – Courbon specifications for loading, Geometrical proportioning etc. of road, rail-cum-road bridges, Indian Road Congress (IRC) and Indian Railway Loading standards and their comparison with loading, Hendry-Jaegar, Morris-Little (Orthotropic plate theories) methods, Stiffness method, Finite difference method, Folded Plate method, Finite strip method and Finite Element method (General treatment), Limit analysis, Design of bridge decks.

Continuous Bridges: Introduction to IRC 112: Provisions of Earthquake Resistant Design of Bridges.

Connections: Design of different connections, Bearings and joints.

Substructure Analysis and Design: Piers, Abutments, Wing walls and other appurtenant structures.

Foundations: Well foundations and pile foundation, Design and construction and field problems.

Dynamics Behaviour: Behaviour of bridges under dynamic loads, Discussion of code provisions for design of bridges for wind and earthquake forces.

Long Span Bridges: General discussion of suspension and cable stayed bridges.

Course Learning Outcomes (CLO): The students will be able to:

- understand the concept of planning and investigation for bridges
- analyse and design superstructures for various types of rcc bridges
- analyse and design various types of substructures and foundations
- perform dynamic analysis of bridges

91st Senate approved Courses Scheme & Syllabus for ME-Structures (2017)
Text Books:

Reference Books:
3. Relevant Road & Railway Codes for Bridges.

Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>EST</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Sessionals (May include assignments/quizzes)</td>
<td>25</td>
</tr>
</tbody>
</table>
PCE212 TALL BUILDINGS

Course Objectives: To be able to analyze and design of tall structural systems

Principles of Planning of Tall Buildings: Technological Planning, Mechanical systems, Fire rating, Local considerations, Structures elements, Types of structural systems for tall buildings, Shear Walls and their arrangement.

Design of Tall Buildings: Procedures of elastic design, Ultimate strength design and Limit state design of super structures including structural connections, soil structure interaction.

Introduction to dampers

Course Learning Outcomes (CLO): The students will be able to:
- Plan tall buildings considering structural systems, fire rating, local considerations etc.
- Evaluate loading for tall structures
- Analyze and design of tall structural systems including structural connections
- Analyse tube-in-tube construction and 3-dimensional analysis of shear core building

Text Books:

Reference Books:
1. Symposium on Tall Buildings with particular reference to Shear Wall Structures, held at University of Southampton (1996).

Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>EST</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Sessionals (May include assignments/quizzes)</td>
<td>25</td>
</tr>
</tbody>
</table>

91st Senate approved Courses Scheme & Syllabus for ME-Structures (2017)
PCE213 WIND EFFECT ON STRUCTURES

Course Objectives: To evaluate the wind forces for various structures using relevant Indian standards and to design structures for wind resistance.

Introduction: Nature of windstorm, Design wind speed, Atmospheric boundary coyer and Wind turbulence.

Basic Bluff body aerodynamics: Flow around bluff bodies, Pressure & force coefficients flow around flat plates, Walls, Prismatic shapes.

Wind effects on Low Buildings: Low buildings with different roof shapes and multi-span buildings.

Wind effects on Tall Buildings: Along wind effects, Across wind effects and vortex shedding.

Wind effects on Bridges: Basic force coefficients for bridges, Nature of dynamic response of long span bridges, Flutter instability, Buffeting of long span bridges. Cable suspended structures.

Role of Wind Tunnel: Flow simulation, Modelling, Flow measurement, Pressure measurement, Deformation measurement.

Introduction to tensile and membrane structures

Course Learning Outcomes (CLO): The students will be able to:
- understand wind effects on low as well as tall buildings
- evaluation of wind forces for various structures using relevant indian standards
- design of structures for wind resistance
- understand the role of wind tunnel testing for structural safety

Text Books:

Reference Books:

Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>EST</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Sessionals (May include assignments/quizzes)</td>
<td>25</td>
</tr>
</tbody>
</table>

91st Senate approved Courses Scheme & Syllabus for ME-Structures (2017)
Course Objectives: To understand the concepts of bearing capacity of soil so as to have deeper understanding in the design of foundations

Shallow foundations: Terzaghi’s bearing capacity equation, General bearing capacity equation, Meyerhof’s Vesic theory, Effect of water table, Special footing problems, I.S. Codes, Footing pressure for settlement on sand, Soil pressure at a depth, Boussineq’s & Westergaard’s methods, Computation of settlements, Inclined and Eccentric Loads.

Pile foundations: Timber, Concrete, Steel piles, Estimating pile capacity by dynamic formula, by wave equation and by static methods, Point bearing piles, Pile load tests, Negative skin friction, Modulus of sub-grade reaction for laterally loaded piles, Lateral resistance, Pile group considerations, Efficiency, Stresses on underlying strata, Settlement of pile groups, Pile caps, Batter piles, Approximate and Exact analysis of pile groups, I.S. Codes.

Well Foundations: Types (open end, closed or box, Pneumatic, Drilled), Shapes, Bearing capacity and settlements, Determination of grip length by dimensional analysis, Stability of well foundations by IRC Method, Construction, Tilts & shifts.

Introduction to Geotechnical Earthquake Engineering: Ground Shaking, Liquefaction, Evaluation, Mechanism, Effects of liquefaction.

Course Learning Outcomes (CLO): The students will be able to:

- understand the concept of evaluation of bearing capacity for shallow foundations
- evaluate the load carrying capacity of pile and well foundations
- perform geotechnical analysis of machine foundations
- understand the concept of liquefaction of soils

Text Books:
Reference Books:

Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>EST</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Sessionals (May include assignments/quizzes)</td>
<td>25</td>
</tr>
</tbody>
</table>
Course Objectives: To understand the basic concepts related to reliability analysis of structures and to design the structures for various reliability indices.

Basic Probability and Statistics: Events, random variables, Discrete and Continuous distributions, Functions of random variables and moments.

Reliability and Design under Uncertainty: Methods of finding reliability, Weakest link structures, Single members, Several load conditions, Multi-member multi-load condition, Fail-safe structure, First and second moment semi probabilistic design, Simple and extended optimisation.

Course Learning Outcomes (CLO): The students will be able to:
- understand use of general concepts of statistics for probabilistic analysis
- understand the basic concepts related to reliability analysis of structures
- design the structures for various reliability indices

Text Books:

Reference Books:

Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>EST</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Sessionals (May include assignments/quizzes)</td>
<td>25</td>
</tr>
</tbody>
</table>

91st Senate approved Courses Scheme & Syllabus for ME-Structures (2017)
PCE323 INDUSTRIAL STRUCTURES

Course Objectives: To analyse and design various industrial buildings.

Review of Plastic Design: Concept of minimum weight design.

Design of Industrial Buildings: General, Framing, Crane girders & columns, Analysis of trussed bents, Design of industrial frame.

Design of Storage Structures: Design of containers like bunkers, silos.

Design of Space Structures: Transmission towers, Steel domes, Pre-cast building components.

Design using Light Gauge Sections: Structural use of pressed sections and light gauge sections, Aluminium as a material of construction for industrial structures and design of such structures, Tubular structures and Sandwich plate construction.

Aluminium structures: Introduction, Permissible stresses, Tension members, Compression members, Design of beams, Local buckling of compression elements, Riveted and bolted construction, Design of chimneys, Load analysis, Design of steel supporting chimney, Chimney foundation.

Construction Practices: Shop practice in steel construction, Fabrication erection and production.

Course Learning Outcomes (CLO): The students will be able to:

• carry out plastic design of structural elements
• analyse and design industrial buildings and storage structures
• analyse and design structures using light gauge steel and aluminium
• to understand shop practice in steel construction including fabrication, erection and production.

Text Books:

Reference Books:

91st Senate approved Courses Scheme & Syllabus for ME-Structures (2017)
Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>EST</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Sessionals (May include assignments/quizzes)</td>
<td>25</td>
</tr>
</tbody>
</table>
PCE391 MINOR DESIGN PROJECT

Course Objectives: To expose students to apply knowledge to design various civil engineering structures.

The design project shall consist of any one of the following components viz. design of structures, case studies on existing structures, experiments in lab for some research work. They shall be evaluated on the basis of project report and viva-voce examination.

Course Learning Outcomes (CLO): The students will be able to:
- analyze detailed design problem related any one of the following components viz. design of structures, geotechnical investigations, water supply distribution system, irrigation engineering and highway design.
- develop acumen for higher education and research.
- master the art of working in group, and develop understanding of technical dissertation presentation and writing.

Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Internal Evaluation</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>Report</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>External Evaluation</td>
<td>50</td>
</tr>
</tbody>
</table>
PCE 392: SEMINAR

Course Objectives: To expose students to extensive literature review on the area of their research interest.

The seminar is carried out on one topic by each student so as to have state-of-the art knowledge on that area and to define the gray area in that topic so as to carry out further research in that area. They shall be evaluated on the basis of project report and viva-voce examination.

Course Learning Outcomes (CLO): The students will be able to:
- carry out extensive literature review.
- develop acumen for higher education and research.

Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Internal Evaluation</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>Report</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>External Evaluation</td>
<td>50</td>
</tr>
</tbody>
</table>
Course Objectives: To expose students to research work in the area of their interest.

Extensive research is carried out on one topic by each student by conducted experiments in the lab or by developing analytical models by using softwares. They shall be evaluated on the basis of dissertation report and viva-voce examination.

Course Learning Outcomes (CLO): The students will be able to:
- develop acumen for higher education and research.

Evaluation Scheme:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Evaluation Elements</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Research paper</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Report</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>External Evaluation</td>
<td>40</td>
</tr>
</tbody>
</table>