Programme outcomes, Programme specific outcomes and course outcomes for all Programmes offered by the institution are stated and displayed on website and communicated to teachers and students

The program outcomes are achieved through curriculum that offers a number of mandatory courses as well as elective courses. Each course has defined course outcomes that are mapped to the program outcomes.

The linkage among program outcomes and course outcomes is shown in the following Table. The course outcomes are thus directly and quantitatively assessed, and are tied to the program outcomes as shown in the course syllabi. Therefore if the course outcomes are met, the program outcomes are met. In order to attain the correlation between course outcomes and POs, the following perform as per the following guidelines have been used during the introduction/revision of the course:

- (i) Mark (*) if the subject matter meets a particular program outcome to a small extent only.
- (ii) Mark (**) if the subject matter meets a particular program outcome to a reasonable extent.
- (iii) Mark (***) if the subject matter meets a particular program outcome to a large extent.

The same is compiled and shown below:

At the completion of the MSc. C	At the completion of the MSc. Chemistry program, the student will be able to:			
Program Outcome	Work in the pure,	Analyse data obtained	Apply green	
\rightarrow	interdisciplinary	from sophisticated	chemistry approach	
	and	instruments (like UV-	towards planning	
	multidisciplinary	Vis, Fluorescence, FTIR,	and execution of	
	areas of chemical	NMR, GCMS, HPLC,	research in frontier	
	sciences and its	GCMS and TGA) for the	areas of chemical	
	applications.	structure determination	sciences.	
Course Outcome		and chemical analysis.		
ANALYTICAL CHEMIST	RY (PCY101)			
Principles of optical methods				
like AES, AAS, Plasma and				
Electric Discharge				
Spectroscopy,	**	***	*	
Spectrofluorimetry,				
Nephelometry and				
Turbidimetry				
Potentiometric, Coulometric,				
and Voltametric methods of	**	***	*	
analysis.				
Chromatographic	***	***	*	
Techniques and applications.				
INORGANIC CHEMISTRY	(PCY102)			
Chemistry of main group	***	***	*	

FIRST SEMESTER

	1		r
elements, and synthesis and	**		
properties of few main group			
compounds.			
General properties and			
	ale ale ale		
separation of lanthanides and	***	***	*
actinides.	***		
Basics of nuclear chemistry			
and radio analytical	***	**	*
techniques.	**		
Stability of organometallic			
compounds and clusters, and	***	***	*
their applications as	*		
industrial catalysts.			
STEREOCHEMISTRY ANI) PHOTOCHEMISTR	Y (PCY103)	
Conformational analysis of			
cycloalkanes, reactivity,			
•	**	***	*
chirality, interconversion,	<u> </u>	<u> </u>	ث
resolution and asymmetric			
synthesis.			
Aromaticity, nonaromaticity			
and antiaromaticity in			
carbocyclic and heterocyclic	***	**	*
÷ •			
compounds.			
Molecular orbital symmetry			
and possibility of thermally	**	**	*
and photochemically	-11-	de de	
pericyclic reactions.			
Basics of photochemical			
reactions of alkenes,			
,	**	***	*
carbonyl and aromatic			
compounds.	<u> </u>		
THERMODYNAMICS AND	CHEMICAL KINETI	CS (PCY201)	
Explain the spontaneity of a			
process and the conditions	ala ala	-11-	ata ata ata
required for a spontaneous	**	**	***
process.			
Describe different methods			
to determine rate law and			
derive the rate law for	**	**	***
various chemical reactions			
including fast reactions			
Explain collision and			
activated complex theory and			
1 2	ماديان	-1-1-	sta sta
determination of activation	**	**	**
parameters for a reaction and			
homogeneous catalysis			
Explain importance of			
adsorption process,	**	**	***
heterogeneous catalysis,			l

Langmuir, and BET model			
Describe the concept of			
colloidal material,			
classification, synthesis and	**	**	***
their stability for many			
practical uses			
practical uses	CHEMISTRY LA	AR _I (PCV206)	
Set up the apparatus for the		$\mathbf{X} \mathbf{D} = \mathbf{I} \left(\mathbf{I} \in \mathbf{I} \mathbf{Z} 0 0 \right)$	
1	**	**	**
synthesis and characterization of certain			
compounds			
Quantify ions by volumetric	**	**	**
and gravimetric analysis			
Operate and apply various			
spectroscopic techniques for	**	**	**
identification and			
quantification.			
	CAL BIOLOGY (for n	on-medical students) PCY10'	7
Molecular structure of			
proteins, DNA, RNA,	**	***	**
Carbohydrates, Lipids and			
Vitamins.			
Organization and working			
principles of various	**	***	**
components present in living			
cell.			

SECOND SEMESTER

MOLECULAR SPECTRO	OSCOPY (PCY215)		
Explain the principle and			
instrumentation of			
microwave, infrared-			
vibration-rotation Raman and			
infra-red spectroscopy and	**	***	**
interpret microwave,			
vibration-rotation Raman and			
infra-red spectra for chemical			
analysis			
Explain the principle and			
instrumentation of electronic			
spectroscopy and analyze the	*	**	**
electronic spectra of different			
species			
Explain the principle and			
instrumentation of nuclear			
magnetic and electron spin	***	**	*
resonance spectroscopy and			
apply the knowledge in			
characterizing the molecules			

and also their use in medical			
diagnostics.			
Explain the principle,			
instrumentation, and			
application of Mössbauer	**	**	*
spectroscopy to study	de de	de de	·
bonding in iron derived			
complexes.			
	DORDINATION CH	EMISTRY (PCY202)	
Explain the bonding in	**	**	*
coordination complexes.	**	**	*
Interpretation of the			
electronic and magnetic	**	**	*
properties.			
Explain the formation and	**	**	*
stability of the coordination	**	**	*
complexes			
Elucidate the kinetics and			
reaction mechanism of	**	**	*
coordination complexes			
including redox reactions			
ORO	GANIC REACTION M	ECHANISMS (PCY203)	
Mechanistic aspects in			
nucleophilic and	**	**	**
electrophilic substitution.			
Reaction conditions,			
products formation and			
mechanisms of some named	*	**	*
reactions.			
Mechanisms of addition			
reactions of C=C and C=O			
	*	**	*
bonds and elimination			
reactions.			
	QUANTUM CHEM	ISTRY (PCY104)	
Explain Schrodinger			
equation for various quantum			
chemical models such as,			
particle in a box, harmonic	**	***	***
oscillator, rigid rotor models			
and their quantum chemical			
description			
Explain the operator algebra			
and their physical	**	**	*
significance			
Describe the electronic and			
Hamiltonian operators for H-			
like atoms and quantum			
chemical description of	***	**	**
1			
angular momentum and term			
symbols for a one and many-			

electron systems			
Describe the approximation methods to solve the Schrodinger equation of many electron systems and their application for to describe the concept of bonding.	***	**	***
CHEMISTRY LAB –II (PCY	(209)		
Handle and use different organic and inorganic reagents.	**	**	***
Set up organic and inorganic reactions and characterize products using spectroscopic techniques.	**	***	**
Know the preparation, purification and characterization of different organic and inorganic compounds.	**	***	***
MEDICINA	L AND PHARMACEU	TICAL CHEMISTRY (PCY	(211)
Drug designing and development, their SAR and QSAR	***	**	***
Mode of action of different drugs.	**	**	*
Role of drugs to inhibit the particular enzymes and treatment of disease	***	*	*

GREEN CHEMISTRY(PCY	204)		
Concepts of green chemistry.	**	**	***
Applications of green chemistry for sustainable development	***	**	**
SUPRAMOLECULAR CHE	MISTRY (PCY213)		L
Molecular recognition and nature of bindings involved in biological systems	*	**	**
Structure of supramolecules of various types in solution and solid state	*	**	**
Applicationsofsupramoleculesinminiaturizationofmoleculardevices	**	*	**
Molecular recognition and nature of bindings involved in biological systems	*	**	**
MATERIAL CHEMISTRY	(PCYXXX)		
Describe Unit cells, lattice types, crystal system and point defects in solids	*	**	*
Explain X-ray and electron diffraction for crystal structure analysis	**	**	**
Explainelectricalandmagneticpropertiesofmaterials.	***	**	***
Elucidate the size-dependent physicochemical properties of nanomaterials	***	***	***

THIRD SEMESTER

SYMMETRY AND GROUP	THEORY (PCY302)		
Concepts of symmetry and			
group theory in solving	**	**	*
chemical structural problems			
Explain molecular structure			
by the use of character tables	***	*	*
and projection operator	-111-		· [·
techniques			
Application of symmetry	*	***	**

and group theory in IR			
spectroscopy			
CATALYSIS AND REAGEN	NTS (PCY307)		
Use of transition metal based and other catalysts for different organic reactions.	***	**	*
use of reagents for different reaction transformations	**	*	**
Various reagents and their applications in industry.	**	*	**
INT	TERPRETATIVE SPEC	CTROSCOPY (PCY308)	
IR range for functional groups, λ_{max} for polyenes and α , β -unsaturated carbonyl compounds.	***	**	***
Interpret cotton effect curves for obtaining absolute configuration of chiral molecules with chromophores.	**	**	*
Solve structural problems based on UV-Vis, IR, ¹ HNMR, ¹³ CNMR and mass spectral data.	***	*	*
PHYSICA	L AND ANALYTICAL	CHEMISTRY LAB (PCY 3	09)
To be familiar with experimental techniques for controlling chemical reactions	***	**	**
Measure various physical and chemical properties of materials and the kinetics of a chemical reaction	***	**	*
Record and interpret the UV- Vis and IR spectra for structural analysis and kinetic studies	**	***	**
Development of experimental skills on conductivity meter, potentiometer, pH meter and voltammeter for different applications	***	**	**

COMPUTATIONAL CHEMISTRY (PCYXXX)			
Run various quantum chemical and molecular			
dynamics software, such as	**	**	***
Gaussian, ORCA,			
Gromacs/Amber			

Explain chemical principles			
using computational	***	**	***
modelling			
Use those packages to solve			
different chemical and	***	**	***
(bio)chemical problems			
Analyze and interpret the			
outputs of these calculations			
to rationalize experimental	***	**	***
outcomes or even making			
testable predictions			
Use the molecular dynamics			
programs to explore the	***	**	***
conformational changes of	***	**	***
proteins with respect to time			
· ·	ANGEMENTS AND RI	ETROSYNTHESIS (PCY32))
Mechanistic pathway of	*	**	**
organic reactions.	*	**	**
Retrosynthetic approach to	*	**	**
planning organic syntheses.	*	**	**
Conversion of different			
functional group via	*	***	***
rearrangement reaction.			
	PHOTOPHYSICAL CH	IEMISTRY (PCY322)	
Photochemistry and		, , , , , , , , , , , , , , , , , , ,	
photophysical principles.	**	**	**
Identification and			
characterization of transient			
intermediates by ultrafast	*	***	**
modern techniques.			
Theory of photoreaction.	*	**	**
application of			
11			
photochemistry and	ماد ماد	**	**
photophysical principles	***	**	**
on simple and			
macromolecules.			
			l

ENVIRONMENTAL CHEMISTRY (PCY XXX)				
Different concepts of atmosphere, stratospheric and tropospheric chemistry, photochemical smog, acid rain, atmospheric aerosols, global climate	**	**	***	
Gases in hydrosphere, organic matter in water, humic material, metals in aqueous environment	**	**	**	
Chemistry of colloids with	**	**	**	

reference to environment					
Air pollution and its control	**	**	**		
ORGANOMETALLIC CHEMISTRY (PCY XXX)					
Describe the structure and bonding in main group and transition metal organometallic compounds	**	**	*		
Describe the reactivity and reaction mechanism of various organometallic compounds	**	***	*		
Describe the multicentre bonding in different organotransition metal compounds	**	***	*		
Apply the acquired knowledge to explain the catalysis by various transition metal-organic compounds	***	**	**		
SEMINAR (SUMMER TRAINING/ INDUSTRIAL CASE STUDY)					
To expose the students with the working culture of industrial and academic research labs.	*	**	**		

FOURTH SEMESTER

BIOINORGANIC AND BIOPHYSICAL CHEMISTRY (PCYXXX)				
Factors that govern the				
stability, folding, and	***	***	**	
dynamics of proteins.				
Explain the kinetics,				
thermodynamics, and				
mechanism of protein	***	**	**	
folding and their				
implications in misfolding.				
Describe the structure and	***	**	**	
biological functions of				

*
*
*
*
*
*
*
k
*
*
k
ĸ
k
*
14
k
*
•

chemical analysis.					
DISSERTATION (PCY 491)					
To expose the students to the	**	*	*		
literature review			·		
Designing and execution of	**	**	**		
the small reaction schemes	-11-		-11-		
Project report/manuscript	***	*	**		
writing and presentation	.111.		-11-		

Content Delivery Methods:

The following are the various other content delivery methods used to deliver the courses:

- Lecture along with discussions
- Quizzes
- Tutorials
- Demonstrations (Such as models, laboratory work, and Industrial visits)
- Home assignments
- Project work and report submission
- Presentations

Online Learning Resources: In addition to the syllabus mentioned in the curriculum, the students are encouraged to gain the knowledge through e-resources such as:

- NPTEL <u>http://nptel.iitm.ac.in</u>
- Wikipedia <u>https://en.wikipedia.org</u>
- MIT Open Courseware http://ocw.mit.edu/index.htm
- RSC learning portal <u>http://www.rsc.org/learn-chemistry</u>

The delivery methods are chosen appropriate to meet the Program Outcomes. The generalized mapping of the course delivery methods to the program outcomes is shown in table below:

At the completion of the MSc. Chemistry program, the student will be able to:					
Program Outcomes → Content delivery methods	work in the pure, interdisciplinary and multidisciplinary areas of chemical sciences and its applications	analyse data obtained from sophisticated instruments (like UV-Vis, Fluorescence, FTIR, NMR, GCMS, HPLC, GCMS and TGA) for the structure determination and chemical analysis	apply green chemistry approach towards planning and execution of research in frontier areas of chemical sciences		
Lecture along with discussions	*	*	*		
Quizzes	*	*	*		
Tutorials	*	*	*		
Demonstrations (Such as models, laboratory work, and Industrial visits)	*	*	*		
Home assignments	*	*	*		
Project work and report submission	*	*	*		
Presentations	*	*	*		