UEI841: ADVANCED CONTROL SYSTEMS

L T P Cr 3 1 0 3.5

Course objective: To learn the methods for analyzing the behavior of nonlinear control systems and the designing of control systems.

Nonlinear Control Systems: Introduction to Nonlinear systems and their properties, Common Non-linearities, Describing functions, Phase plane method, Lyapounov's method for stability study, concept of Limit Cycle.

Optimal Control Theory: Introduction, Optimal control problems, Mathematical procedures for optimal control design: Calculus of variations, Pontryagin's optimum policy, Bang-Bang Control, Hamilton-Jacobi Principle

z-Plane Analysis of Discrete-Time Control Systems: Introduction, Impulse sampling and data hold, Reconstructing original signal from sampled signals, concept of pulse transfer function, Realization of digital controllers.

Design of Discrete-time Control Systems: Introduction, Stability analysis of closed-loop systems in the z-plane, Transient and steady state response analysis, Design based on the root-locus method, Design based on the frequency-response method.

State-Space Analysis: Introduction, State-space representations of discrete-time systems, Solving discrete-time state-space equations, Pulse transfer function matrix, Discretization of continuous time state space equations, Lyapunov stability analysis, Controllability and Observability, Design via pole placement, State observer design.

Course Learning Outcomes (CLO):

After the successful completion of the course the students will be able to:

- 1. demonstrate non-linear system behavior by phase plane and describing function methods and the
- 2. perform the stability analysis nonlinear systems by Lyapunovmethoddevelop design skills in optimal control problems
- 3. derive discrete-time mathematical models in both time domain (difference equations, state equations) and z-domain (transfer function using z-transform).
- 4. predict and analyze transient and steady-state responses and stability and sensitivity of both open-loop and closed-loop linear, time-invariant, discrete-time control systems.
- 5. acquire knowledge of state space and state feedback in modern control systems, pole placement, design of state observers and output feedback controllers

Text Books:

- 1. Slotine & Li, Applied Non-Linear Control, Englewood Cliffs, NJ: Prentice-Hall, (1991).
- 2. Bandyopadhyay, M.N., Control Engineering: Theory and Practice, Prentice-Hall of India Private Limited (2003).
- 3. Ogata, K., Discrete-time Control Systems, Pearson Education (2005).

Evaluation Scheme:

S.NO.	Evaluation Elements	Weightage
1	MST	30
2	EST	45
3	Sessional (May include Assignments//Quizzes/Lab Evaluations)	25