UEI607: DIGITAL SIGNAL PROCESSING AND APPLICATIONS

L	Т	Р	Cr
3	1	2	4.5

Course Objective: To understand the basic concepts and techniques for digital signal processing, familiarization with DSP concepts by studying the design of different digital filters and transform-domain processing.

Introduction: Review of Discrete Time Signals and Systems and z-Transforms, Solution of Difference Equations Using One-sided z-Transform, Frequency domain Characteristics of LTI Systems, LTI Systems as Frequency-Selective Filters.

Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT): Discrete Fourier Transform and its Properties, Divide and Conquer Approach, Decimation in Time and Decimation in Frequency FFT Algorithms.

Digital Filter Structure: Describing Equation of digital filter, Structures for FIR Systems: Direct Form Structure, Cascade Form Structure, Structure for IIR Systems: Direct Form Structures, Cascade Form Structure, Parallel Form Structure and Lattice Structure.

Design of Digital Filters: Causality and its Implications, Difference between analog filters and digital filters, FIR filter design using windows, Design of IIR filters from analog filters using: Approximation of Derivatives, Impulse Invariance and Bilinear Transformation, Frequency transformations.

Analysis of Finite Word length Effects: Introduction, The quantization process and errors, Analysis of coefficient quantization effects in FIR filters, A/D noise analysis, Analysis of arithmetic round off errors, Limit cycles in IIR filters,

Laboratory work: Convolution and correlation, Solution of difference equations using z- Transform and Fourier tools, FFT and spectrum analysis, design of high pass, low pass, band pass and band stop FIR filter using window method, design of IIR filter using Matched Z Transform (MZT), Bilinear Z Transform (BZT), Pole Zero Placement and Impulse Invariant methods.

Course Learning Outcomes (CLO):

After the successful completion of the course the students will be able to:

- 1. Analyze the signals in time and frequency domain
- 2. Apply the transformation tools on signals and systems and analyze their significance and applications.
- 3. design the structures of different types of digital filters
- 4. design various digital filters and analyze their frequency response
- 5. Analyse finite word length effects.

Text Books

- 1. Proakis, J.G. and Manolakis, D.G., Digital Signal Processing, Prentice Hall of India Private Limited (2006).
- 2. Rabiner, C.R. and Gold, B., Theory and Applications of Digital Signal Processing, Prentice Hall of India Private Limited (2000).

Reference Books:

- 1. Antonion, A., Digital Filters: Analysis Design and Application, Prentice Hall of India Private Limited (1999).
- 2. Oppenhein, A.V. and Schafer, R.W., Digital Signal Processing, Prentice Hall of India Private Limited (1998).

Evaluation Scheme:

S.NO.	Evaluation Elements	Weightage
1	MST	25
2	EST	35
3	Sessional (May include Assignments//Quizzes/Lab Evaluations)	40