UEI803 VIRTUAL INSTRUMENTATION

L T P Cr 2 0 3 3.5

Review of Virtual Instrumentation: Historical perspective, Advantages etc., Block diagram and architecture of a virtual Instrument

Data-flow Techniques: Graphical programming in data flow, Comparison with conventional programming.

VI Programming Techniques: Vis and sub-Vis, Loops and charts, Arrays, Clusters and graphs, Case and sequence structures, Formula nodes, Local and global variables, String and file I/O.

Data Acquisition Basics: ADC, DAC, DIO, Counters and timers, PC Hardware' structure, Timing, Interrupts, DMA Software and hardware installation.

Common Instrumentation Interfaces: Current loop RS232C/ RS485, GPIB.

Use of Analysis Tools: Some tools from the advanced analysis tools relevant to the discipline may be included e.g, Fourier transforms, Power spectrum, Correlation methods, Windowing and filtering.

Applications of VI: VI Applications in various fields.

Additional Topics: System buses, Interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., Networking basics for office and industrial applications, VISA and IVI, Image acquisition and processing, Motion Control.

Laboratory Work:

Components of LabVIEW, Celsius to Fahrenheit conversion, Debugging, Sub-VI, Multiplot charts, Case structures, ASCII files, Function Generator, Property Node, Formula node, Shift registers, Array, Strings, Clusters, DC voltage measurement using DAQ

COURSE LEARNING OUTCOME (CLO): The student will be able to

- 1. Demonstrate the working of labview.
- 2. Explain the various types of structures used in labview.
- 3. Analyze and design different type of programs based on data
- 4. Demonstrate the use of labview for signal processing image

Text Books:

- 1. Johnson, G., LabVIEW Graphical Programming, McGraw-Hill (2006).
- 2. Sokoloft, L., Basic Concepts of LabVIEW 4, Prentice Hall Inc. (2004).
- 3. Wells, L.K. and Travis, J., LabVIEW for Everyone, Prentice Hall Inc. (1996).

Reference Book:

1. Gupta, S. and Gupta, J.P., PC Interfacing for Data Acquisition and Process Control, Instrument Society of America (1988).

Evaluation Scheme:

Sr. No.	Evaluation Elements	Weightage (%)
1	MST	25
2	EST	35
3	Sessionals (May include Assignments/Projects/Tutorials/Quizzes/Lab Evaluations)	40