UEI801 ADVANCED PROCESS CONTROL

L	Т	Р	Cr
3	1	2	4.5

Introduction: Review of general concepts, Terminology, Applications of process control Simulation, Mathematical modeling

Advanced Control Schemes: Cascade, Feed-forward, Feed-forward plus Feedback, Ratio control, Inferential control, Dead time and Inverse response compensation, Adaptive control, Model reference adaptive control, Self tuning regulator Interactions and Decoupling of Control Loops: Design of cross controllers and selection of loops using Relative Gain Array

Distributed Control System (DCS): Evolution and advantages of computer control, Configuration of Supervisory, Direct digital control (DDC) and DCS. Artificial Intelligence in Process Control: Expert systems, Neural networks, Fuzzy logic, Neuro Fuzzy, Genetic algorithm, Virtual instrumentation.

Statistical Process Control: Quality control and assurance, Control charts, Total quality management (TQM), ISO

Programmable Logic Controllers: Comparison with hard wired relay and semiconductor logic, Hardware, Ladder diagram programming, Case studies, Introduction to CPLD, SPLD, FPGA

Robotics: Kinematics, Sensors, Actuators, End Effectors

Digital Control: Sampling and reconstruction, Discrete systems analysis, Stability and controller design using z transform and difference equations, Smoothing filter realization using difference equations

Laboratory Work:

Level control and flow control using feedback mechanism, Programming with Robotic Arm, PLC programming with hardware and Simulation package.

COURSE LEARNING OUTCOME (CLO): The student will be able to

- 1. Explain the concept of advanced control schemes used in process
- 2. Explain the working of distributed control system
- 3. Elaborate the use of artificial intelligence techniques in process
- 4. Explain the fundamental concepts of plc.
- 5. Explain the concept of digital control system.

Text Books:

- 1. Stephanopoulos, G., Chemical Process Control, Prentice–Hall of India Private Limited (1983).
- 2. Liptak, B.G., Instrument Engineers Handbook, Chilton Book Company (1994).

Reference Books:

- 1. Deb, S.R., Robotics Technology and Flexible Automation, Tata McGraw-Hill (1994).
- 2. Johnson, C.D., Process Control Instrumentation Technology, Prentice–Hall of India Private Limited (2007).

3. Zaidi, A., SPC Concepts, Methodologies and Tools, Prentice–Hall of India Private Limited (1995).

Evaluation	Scheme:
------------	---------

Sr. No.	Evaluation Elements	Weightage (%)
1	MST	25
2	EST	35
3	Sessionals (May include Assignments/Projects/Tutorials/Quizzes/Lab Evaluations)	40
4.		