UEI501 CONTROL SYSTEMS

L	Т	Р	Cr
3	1	2	4.5

Basic Concepts: Historical review, Definitions, Classification, Relative merits and demerits of open and closed loop systems

Mathematical Models of Physical Systems: Linear and non-linear systems, Transfer function, Mathematical modeling of electrical, Mechanical, Thermal, Hydraulic and pneumatic systems, Analogies, Block diagrams and signal flow graphs.

Components: AC and DC servomotors and tachogenerators, Potentiometers, Synchros, Stepper motors.

Analysis: Time and frequency domain analysis, Transient and frequency response of first and second order systems, Correlationship between time and frequency domain specifications, Steady-state errors and error constants, Concepts and applications of P, PD, PI and PID types of control.

Stability: Definition, Routh-Hurwitz criterion, Root locus techniques, Nyquist criterion, Bode plots, Relative stability, Gain margin and phase margins, M and N circles, Nichol's charts

MATLAB: Introduction, Applications in solution of control system problems.

Compensation: Lead, Lag and lag-lead compensators, Design of compensating networks for specified control system performance.

Components: D.C. and A.C. Servomotors, D.C. and A.C. Tachogenerators, Potentiometers and optical encoders, Synchros and stepper motors, Introduction to PLCs, their hardware and ladder diagram programme.

State Space Analysis: Concepts of state, State variables and state models, State space equations, Transfer function, Transfer model, State space representation of dynamic systems, State transition matrix, Decomposition of transfer function, Controllability and observability.

Laboratory : Linear system simulator, Compensation design, D.C. position control and speed control, Synchro characteristics, Servo demonstration, Stepper motor, Potentiometer error detector, Rate control system, Series control system, Temperature control system.

Course Learning Outcomes:

- 1. Develop the mathematical model of the physical systems.
- 2. Analyze the response of the closed and open loop systems.
- 3. Analyze the stability of the closed and open loop systems.
- 4. Design the various kinds of compensator.
- 5. Develop and analyze state space models

Text Books:

- 1. Gopal, M., Digital Control System, Wiley Eastern (1986).
- 2. Nagrath, I.J. and Gopal, M., Control System Engineering, New Age International (P) Limited, Publishers (2003).
- 3. Ogata, K., Modern Control Engineering, Prentice–Hall of India Private Limited (2001).

Reference Books:

- 1. Kuo, B.C., Automatic Control System, Prentice-Hall of India Private Limited (2002).
- 2. Sinha, N.K., Control System, New Age International (P) Limited, Publishers (2002).

Evaluation Scheme:

Sr. No.	Evaluation Elements	Weightage (%)
1	MST	25
2	EST	35
3	Sessionals (May include Assignments/Projects/Tutorials/Quizzes/Lab Evaluations)	40