Course Syllabi: UEE804: Operation and Control of Power Systems (L : T : P :: 3 : 1 : 2)

- 1. Course number and name: UEE804: Operation and Control of Power Systems
- 2. Credits and contact hours: 4.5 and 6
- 3. Text book, title, author, and year

Text Books / Reference Books

- Chakraborti A., Soni,M.L., Gupta,P.V. and Bhatnagar,U.S., a Text Book on Power System Engineering, Dhanpat Rai and Co. (P) Ltd. (2008).
- Nagrath, I.J. and Kothari, D.P., Power System Engineering, Tata McGraw Hill (2007).
- Stevenson, W.D., Power System Analysis, McGraw Hill (2007).
- Kothari, D.P., Dhillon, J.S., Power System Optimization, PHI Learning (2010).
- Allen J. Wood, Bruce F. Wollenberg and Gerald B. Sheble, Power Generation, Operation and Control, Wiley-Interscience (2013).
- Kimbark, E. W., Power System Stability, Volumes-I, IEEE Press (1995).
- Jizhong Z., Optimization of power system operation, Edition Wiley (1996).
- Elgerd, O. Electric Energy Systems Theory, McGraw Hill Education Private Limited (2001).
 - a. Other supplemental materials
 - Nil

4. Specific course information

a. Brief description of the content of the course (catalog description)

Economic Operation of Power Systems: Fuel consumption, Characteristics of thermal unit, Incremental fuel rate and their approximation, Minimum and maximum power generation limits.

Economic Dispatch: Economic dispatch problem with and without transmission line losses, Unit Commitment, methods for their solutions.

Hydrothermal Co-ordination: Hydro-scheduling, Plant models, Scheduling problems, Hydrothermal scheduling problems and its approach.

Power System Control: Ideas of load frequency and voltage control, Reactive power control, Block diagrams of P-f and Q-V controllers, ALFC control, Static and dynamic performance characteristics of ALFC and AVR controllers, Excitation systems model, concept of area and Tie-line operations.

Power System Security: Factors affecting security, Contingency analysis, Network sensitivity, correcting the generation dispatch by using sensitivity method and linear programming.

Small Scale Stability Analysis: d-q model of generator, State space representation, Eigen value and participation factor analysis.

Voltage Stability: Basic concepts, Voltage collapse, P-V and Q-V curves, Impact of load, Static and dynamic analysis of voltage stability, Prevention of voltage collapse.

Laboratory Work: Simulation of thermal scheduling with and without losses, Unit commitment by dynamic programming, simulation of hydro-thermal scheduling by gradient

method, Stability analysis of single area frequency control, Bias control of two area system and AVR.

5. Specific goals for the course

After the completion of the course, the students will be able to:

- Develop small scale model of alternator, excitation and governing systems.
- Decide the scheduling of thermal units and hydro-thermal units for overall economy.
- Design and apply control for frequency and voltage of power system represented by multi area.
- Comprehend power system security and contingency.
- Computation of small scale and voltage stability.

6. Brief list of topics to be covered

- Economic Operation of Power Systems
- Economic Dispatch
- Hydrothermal Co-ordination
- Power System Control
- Power System Security
- Small Scale Stability Analysis
- Voltage Stability