Course Syllabi: UEE504: Power Electronics (L:T:P::3:1:2)

- 1. Course number and name: UEE504: Power Electronics
- 2. Credits and contact hours: 4.5 and 6
- 3. Text book, title, author, and year

Text Books / Reference Books

- Dubey, G.K., Doradla, S.R., Joshi, A. and Sinha, R.M.K., Thyristorised Power Controllers, New Age International (P) Limited, Publishers (2004).
- Rashid, M., Power Electronics, Prentice-Hall of India (2006).
- Bimbhra, P.S., Power Electronics, Khanna Publishers (2012).
- Mohan, N., Underland, T. and Robbins, W. P., Power Electronics: Converter Applications and Design, John Wiley (2007) 3rded.
- Bose, B.K., Handbook of Power Electronics, IEEE Publications.
 - a. Other supplemental materials
 - Nil

4. Specific course information

a. Brief description of the content of the course (catalog description)

Introduction: Introduction to Thyristors and its family, static and dynamic characteristics, turn-on and turn-off methods and firing circuits, Ratings and protection of SCRs, series and parallel operation.

Phase Controlled Converters: Principle of phase control, Single phase and three phase converter circuits with different types of loads, continuous and discontinuous conduction, effect of source inductance, Dual converters and their operation.

DC Choppers: Principle of chopper operation, control strategies, types of choppers, step up and step down choppers, steady state time domain analysis with R, L, and C type loads, voltage, current and load commutated choppers.

Inverters: Single phase voltage source bridge inverters and their steady state analysis, modified Mcmurray half bridge inverter, series inverters, three phase bridge inverters with 180^o and 120^o modes. single-phase PWM inverters, current source inverters, CSI with R load (qualitative approach).

AC Voltage Controllers: Types of single-phase voltage controllers, single-phase voltage controller with R and RL type of loads.

Cycloconverters: Principles of operation, single phase to single phase step up and step down cycloconverters, three phase to single phase cycloconverters, output voltage equation for a cycloconverter.

Laboratory Work: SCR V-I characteristics, Gate firing circuit, DC -DC chopper, Semi converter and Full converter with R , RL and RLC type of loads, DC shunt motor speed control, Single phase AC voltage controller with R load, Inverters, Simulation of power electronics converters.

Minor Project: Design and development of power converters

5. Specific goals for the course

After the completion of the course, the students will be able to:

• Select the power devices as per the usage for energy conversion and control.

- Exhibit the designing of firing and commutation circuits for different converter configurations.
- Analyse various converter configuration / topology with different types of load.
- Identify converter configurations for various power applications.
- Exhibit the usage of power converters for harmonic mitigation, voltage and frequency control.

6. Brief list of topics to be covered

- Thyristors
- Phase Controlled Converters
- DC Choppers
- Inverters
- AC Voltage Controllers
- Cycloconverters