Course Syllabi: UEE804 Operation and Control of Power Systems (L : T : P :: 3 : 1 : 2)

- 1. Course number and name: UEE804; Operation and Control of Power Systems
- 2. Credits and contact hours: Credits: 4.5; Hours: 6
- 3. Text book, title, author, and year
 - Chakraborti, A., Soni, M.L., Gupta, P.V. and Bhatnagar, U.S., a Text Book on Power System Engineering, DhanpatRai and Co. (P) Ltd. (2008).
 - Nagrath, I.J. and Kothari, D.P., Power System Engineering, Tata McGraw Hill (2007).
 - Stevenson, W.D., Power System Analysis, McGraw-Hill (2007).
 - Gupta, B.R., Power System Analysis and Design, S. Chand and Company Limited (2009).
 - Pabla, A.S., Electric Power Distribution, Tata McGraw-Hill (2008).
 - Wadhwa, C.L., Electrical Power Systems, New Age International (P) Limited, Publishers (2008).
 - a. Other supplemental materials
 - Nil

4. Specific course information

a. Brief description of the content of the course (catalog description)

Economic Operation of Power Systems: Fuel consumption, Characteristics of thermal unit, Incremental fuel rate and their approximation, Minimum and maximum power generation limits.

Economic Dispatch: Economic dispatch problem with and without transmission line losses, Unit Commitment, Their solution methods.

Hydrothermal Co-ordination: Hydro-scheduling, Plant models, Scheduling problems, Hydro-thermal scheduling problems and its approach.

Power System Control: Power system control factors, Interconnected operation, Tie-line operations, Reactive power requirements, During peak and off peak hours, Elementary ideas of load frequency and voltage, Reactive power control, Block diagrams of P-f and Q-V controllers, ALFC control, Static and dynamic performance characteristics of ALFC and AVR controllers, Excitation systems.

Power System Security: Factors affecting security, Contingency analysis, Network sensitivity, correcting the generation dispatch by using sensitivity method and linear programming.

Dynamic Modelling of Power System components: Generators, Linear and non linear model using d-q transformation, Power capability curve, Reactive capability limits, V curves and compounding curves, Excitation systems, Turbine and speed governing systems, Loads.

Small Scale Stability Analysis: State space representation, Eigen value and participation factor analysis.

Voltage Stability: Basic concepts, Voltage collapse, P-V and Q-V curves, Impact of load, Static and dynamic analysis of voltage stability, Prevention of voltage collapse.

Laboratory Work

Steady state power limit of a transmission line, Simulation studies of steady state stability of a power system, Characteristics of induction regulator, Volt-ampere characteristics of solar cell and determination of its internal, Resistance, Simulation of different transmission line models on PC, Simulation of steady state operation of a power system on PC, Simulation of load flow

methods and power system stability problems, Use of standards software packages for operation and control of power system.

5. Specific goals for the course

After the completion of the course, the students will be able to:

- Decide the scheduling of thermal units and hydro-thermal units for overall economy.
- Develop small scale model of alternator, excitation and governing systems.
- Design and apply control for frequency and voltage of power system represented by single or multi-area.
- Comprehend power system security and contingency.
- Computation of small scale and voltage stability.

6. Brief list of topics to be covered

- Economic Operation of Power Systems
- Economic dispatch
- Hydrothermal Co-ordination
- Power System Control
- Power System security
- Dynamic Modelling of Power System components
- Voltage stability