PCH233 SELECTED TOPICS IN HEAT TRANSFER

${f L}$	T	P	Cr
3	1	0	3.5

Course Objective:

To learn the basics and advanced concepts of heat transfer and design methodologies involved in various types of heat transfer devices.

Shell-and-Tube Heat Exchangers: Classification, Design methodology, TEMA standards, Mechanical turbulators.

Plate Heat Exchangers: Introduction, Classification, Types of corrugations, Advantages over conventional heat exchangers, Design methodology.

Reactor Heating and Cooling Systems: Time required for heating and cooling of agitated batch reactors, Helical cooling coils, Jacketed vessels.

Cross Flow Compact Heat Exchangers: Classification, Types of fins, Tube-fin and plate-fin heat exchangers, Limitations, Design methodology.

Advanced Thermal Systems: Heat Pipes: Classification, Applications, Limitations, Design methodology, Micro channels: Applications, Advantages, Nanofluids in thermal systems.

Computational Fluid Dynamics: Applications of CFD in heat transfer systems design.

Course learning outcomes (CLOs):

The students will be able to

- 1. understand various types of heat transfer processes and devices
- 2. select and analyze the heat transfer device
- 3. solve the problems of heat transfer related to nano-fluids, micro-channels and heat pipes
- 4. use software tools for solving heat transfer problems

Recommended Books:

- 1. Saunders E.A.D., Heat Exchangers: Selection, Design and Construction, Longman Scientific and Technical (1988).
- 2. Kakaç, S., and Liu, H., Heat Exchangers: Selection, Rating, and Thermal Design, CRC Press (2002).
- 3. Sinnott, R.K., Coulson, J.M., and Richardson, J.F., Chemical Engineering Design, Butterworth-Heinemann (2005).
- 4. Shah, R.K., Subbarao, E.C., and Mashelkar, R.A., Heat Transfer Equipment Design, Taylor & Francis (1988).
- 5. Das, S.K., Choi, S.U., Yu, W., and Pradeep, T., Nanofluids: Science and Technology, Wiley & Sons (2007).
- 6. Anderson, D.A., Introduction to Computational Fluid Dynamics, Cambridge University Press (2005).

Evaluation Scheme:

S.No.	Evaluation Elements	Weightage (%)
1.	MST	30
2.	EST	45
3.	Sessional (may include Assignments/Projects/Tutorials/Quizes/Lab Evaluations)	25