PCH106 REACTION ENGINEERING & REACTOR ANALYSIS

L	Т	Р	Cr
3	1	0	3.5

Course Objective:

To learn about reaction kinetics for single, multiple, isothermal, non-isothermal reactions and reactor design procedures.

Chemical Kinetics: Reaction rates, Kinetics of homogeneous reactions, Interpretation of reaction data.

Isothermal Reactor Design: Design equations for batch, Plug flow, Back-mix flow and Semi-batch reactors.

Multiple Reactions: Maximizing desired product in parallel reactions and series reactions, Solutions to complex reactions.

Steady State Non-isothermal Reactor Design: Combining material and energy balances for nonisothermal CSTR and Plug flow reactors (adiabatic and with heat exchange), Adiabatic temperature and equilibrium conversion, Optimum feed temperature, Multiple steady states, Non-isothermal multiple reactions.

Solid Catalyzed Reactions: Steps in catalytic reactions: adsorption isotherms, surface reaction, desorption rate, limiting step, Diffusion and reaction in spherical catalyst pellets, Estimation of diffusion and reaction limited regimes, Mass transfer and reaction in a packed bed, Fluidized bed and multiphase reactors.

Non-ideal Reactors: Measurement of RTD, Characteristics of RTD, RTD in ideal reactors, Reactor modeling using RTD.

Course learning outcomes (CLOs):

The students will be able to

- 1. solve problems involving single and multiple homogeneous reactions
- 2. analyze and interpret experimental data for homogenous reactions
- 3. solve problems involving non isothermal reactor operation and design
- 4. solve problems involving mass transfer with reaction in solid catalyzed reaction
- 5. analyze and model real reactors

Recommended Books:

- 1. Fogler, H.S., Elements of Chemical Reaction Engineering, Prentice-Hall India (2003).
- 2. Levenspiel, O., Chemical Reaction Engineering, John Wiley (1991).
- 3. Froment, G.F., and Bischoff, K.G., Chemical Reactor Analysis and Design, John Wiley (2001).
- 4. Smith, J.M., Chemical Engineering Kinetics, McGraw-Hill (1981).

Evalua	tion	Scheme:	

S.No.	Evaluation Elements	Weightage (%)
1.	MST	30
2.	EST	45
3.	Sessional (may include Assignments/Projects/Tutorials/Quizes/Lab	25
	Evaluations)	