UES011: THERMO-FLUIDS*

L T P Cr 3 1 2 4.5

Course Objective

To understand basic concepts of fluid flow and thermodynamics and their applications in solving engineering problems.

Fluid Mechanics

- **Introduction**: Definition of a fluid and its properties
- **Hydrostatics**: Measurement of pressure, thrust on submerged surfaces
- **Principles of Fluid Motion**: Description of fluid flow, continuity equation, Euler and Bernoulli equations, Pitot total head and static tubes, venturi-meter, orifice-meter, rotameter, momentum equation and its applications
- **Pipe Flow**: Fully developed flow, laminar pipe flow, turbulent pipe flow, major and minor losses, hydraulic gradient line (HGL) and total energy line (TEL)
- **Boundary Layer**: Boundary layer profile, displacement, momentum and energy thickness

Thermodynamics

- **Introduction**: Properties of matter, the state postulate, energy, processes and thermodynamic systems
- **Properties of Pure Substances**: Property tables, property diagrams, phase change, equations of state (ideal gas)
- **Energy**: Energy transfer by heat, work and mass
- **First Law of Thermodynamics**: Closed system, open system, steady-flow engineering devices
- **Second Law of Thermodynamics**: Statements of the second law, heat engines, refrigeration devices, reversible versus irreversible processes, the Carnot cycle.

Laboratory/Project programme

List of Experiments

- 1. Verification of Bernoulli's theorem
- 2. Determination of hydrostatic force and its location on a vertically immersed surface
- 3. Determination of friction factor for pipes of different materials
- 4. Determination of loss coefficients for various pipe fittings
- 5. Verification of momentum equation
- 6. Visualization of laminar and turbulent flow, and rotameter
- 7. Calibration of a venturi-meter
- 8. Boundary layer over a flat plate

*Lab to be conducted every alternate week.

Sample List of Micro-Projects

Students in a group of 4/5 members will be assigned a micro project.

- 1. Design a physical system to demonstrate the applicability of Bernoulli's equation
- 2. Determine the pressure distribution around the airfoil body with the help of wind tunnel
- 3. Demonstrate the first law of thermodynamics for an open system, for example: a ordinary hair dryer
- 4. Develop a computer program for solving pipe flow network

Course Learning Outcomes (CLO):

Upon completion of this course, the students will be able to:

- 1. Analyze and solve problems of simple fluid based engineering systems including pressures and forces on submerged surfaces
- 2. Analyze fluid flow problems with the application of the mass, momentum and energy equations
- 3. Evaluate practical problems associated with pipe flow systems
- 4. Conceptualize and describe practical flow systems such as boundary layers and their importance in engineering analysis
- 5. Estimate fluid properties and solve basic problems using property tables, property diagrams and equations of state
- 6. Analyze and solve problems related to closed systems and steady-flow devices by applying the conservation of energy principle
- 7. Analyze the second law of thermodynamics for various systems and to evaluate the performance of heat engines, refrigerators and heat pumps

Text Books:

- 1. Kumar, D. S, Fluid Mechanics and Fluid Power Engineering, S. K. Kataria (2009).
- 2. Cengel and Boles, Thermodynamics: an Engineering Approach, McGraw-Hill (2011).

Reference Books:

- 1. Jain, A. K., Fluid Mechanics: including Hydraulic Machines, Khanna Publishers (2003).
- 2. Rao, Y.V. C, An Introduction to Thermodynamics, Universities Press (2004).

Evaluation Scheme:

S. No.	Evaluation Elements	Weightage (%)
1	MST	25
2	EST	40
3	Sessional (may be tutorials/ quizzes/	35
	assignments/lab/ project)	