UCH 835 PROCESS OPTIMIZATION

L T P Cr 3 1 0 3.5

Course Objectives:

To study and apply optimization techniques in the chemical process industry.

Introduction: Process optimization, Formulation of various process optimization problems and their classification, Basic concepts of optimization-convex and concave functions, Necessary and sufficient conditions for stationary points.

Optimization of One Dimensional Functions: Unconstrained multivariable optimization-direct search methods, Bracketing methods: Exhaustive search, Bounding phase, Region elimination methods- Interval halving, Fibonacci search, Golden section search, Point-Estimation, Successive quadratic estimation methods.

Indirect First Order and Second Order Methods: Gradient-based methods-Newton-Raphson, Bisection, Secant, Cubic spline, Root-finding using optimization Techniques.

Multivariable Optimization Algorithms: Optimality criteria, Unidirectional search, Direct search Methods- Evolutionary optimization, Simplex search, Powell's conjugate direction, Gradient-based methods- Cauchy's (steepest descent) method, Newton's method.

Constrained Optimization Algorithms: Kuhn-Tucker conditions, Transformation methods, Penalty function method, Method of multipliers, Sensitivity analysis, Direct search for constraint Minimization-Variable elimination method, Complex search method, Successive linear and quadratic programming, Optimization of staged and discrete processes.

Non-traditional Optimization Techniques: Introduction to Simulated annealing, Genetic algorithms, Differential evolution.

Course Learning Outcomes (CLO):

The students will be able to:

- 1. formulate the objective functions for constrained and unconstrained optimization problems.
- 2. use different optimization strategies.
- 3. solve problems using non-traditional optimization techniques.
- 4. use of different optimization techniques for problem solving.

Text Books:

- 1. Edgar, T. F., Himmelblau, D. M. and Lasdon, L.S. Optimization of Chemical Processes, McGraw-Hill (2001).
- 2. Babu, B.V., Process Plant Simulation, Oxford University Press (2004).

Reference Books:

- 1. Kalyanmoy, D., Optimization for Engineering Design, Prentice Hall (1998).
- 2. Reklaitis, G. V., Ravindran, A., and Ragsdell, K. M., Engineering Optimization Methods and Applications, John Wiley (1983).
- 3. Pike, R. W., Optimization for Engineering Systems, Van Nostrand Reinhold (1986).
- 4. Box, G. E. P., Hunter, W. G., Hunter, J. S., Statistics for Experimenters An Introduction to Design, Data Analysis, and Model Building, John Wiley (1978).

Evaluation Scheme:

S. No.	Evaluation Elements	Weightage (%)
1	MST	30
2	EST	45
3	Sessional (May includes tutorials/ assignments/ quiz's etc)	25