UCH 802 PROCESS MODELING AND SIMULATION

L	Т	Р	Cr
3	0	2	4.0

Introduction: Use and scope of mathematical modeling, Principles of model formulation, Role and importance of steady-state and dynamic simulation, Classification of models, Model building, Modeling difficulties, Degree-of-freedom analysis, Selection of design variables, Types of equations.

Fundamental Laws: Equations of continuity, energy, momentum, transport, and state, Transport properties, Equilibrium and chemical kinetics, Review of thermodynamic correlations for the estimation of physical properties like phase equilibria, bubble and dew points etc, Prediction of enthalpy departure and VLE characteristics from equation of state by the application of numerical methods.

Modeling of Specific Systems: Constant and variable holdup CSTRs under isothermal and non-isothermal conditions, Stability analysis, Gas phase pressurized CSTR, Two phase CSTR, Non-isothermal PFR, Batch and semi-batch reactors, Heat conduction in a bar, Laminar flow of Newtonian liquid in a pipe, Gravity flow tank, Single component vaporizer, Multi-component flash drum, Absorption column, Ideal binary distillation column and non-ideal multi-component distillation column, Batch distillation with holdup etc.

Simulation: Simulation of the models, Sequential modular approach, Equation oriented approach, Partitioning and tearing, Introduction and use of process simulation software (ASPEN/Hysis) for flow sheet simulation.

Text Books:

1. Luyben W.L., Process Modeling, Simulation, and Control for Chemical Engineering, McGraw-Hill (1998).

Reference Books:

- 1. Denn, M. M., Process Modeling, Longman Sc & Tech. (1987).
- 2. Himmelblau, D.M and Bischoff, K.B., Process Analysis and Simulation: Deterministic Systems, John Wiley (1968).
- 3. Holland, C. D., Fundamentals and Modeling of Separation Processes: Absorption, Distillation, Evaporation and Extraction, Englewood Cliffs, Prentice-Hall (1974).
- 4. Babu, B.V., Process Plant Simulation, Oxford University Press (2004).