PCS 212 INFORMATION RETRIEVAL L T P Cr 3 0 2 4.0

Course Objectives: To have an advanced level of understanding of common and emerging methods of organizing, summarizing, and analyzing large collections of unstructured and lightly-structured text.

Introduction: Textanalysis, Types of text analysis, Information retrieval, IR system architecture: Text processing, Indexes and query matching, Text processing: Text format, Tokenization, stemming, lemmatization, Language modeling, Examples of open source IR Systems.

Informational Retrieval: Query processing models. Probabilistic models (Binary independence model, Robertson/Spark Jones weighting formula, Two-Poisson model), Relevance feedback (Term selection, Pseudo relevance feedback); Language models: Unigram, Bigram language models, Generating queries from documents, Language models and smoothing, Ranking with language models, KullbackLeibler divergence, Divergence from randomness, Passage retrieval and ranking.

Management of Information Retrieval Systems: Knowledge management, Information management, Digital asset management, Network management, Search engine optimization, Records compliance and risk management, Version control, Data and data quality, Information system failure.

Types of information retrieval systems: Web retrieval and mining, Semantic web, XML information retrieval, Recommender systems and expert locators, Knowledge management systems, Decision support systems, Geographic information system(GIS).

Indexing: Inverted indices, Index components and Index life cycle, Interleaving Dictionary and Postings lists, Index construction, Query processing for ranked retrieval, Compression: General-purpose data compression, Symbol-wise data compression, Compressing posting lists, Compressing the dictionary.

Information categorization and filtering: Classification, Probabilistic classifiers, linear classifiers, Similarity-based classifiers, Multi category ranking and classification, learning to rank, Introduction to the clustering problem, Partitioning methods, Clustering versus classification, Reduced dimensionality/spectral methods.

Sentiment Analysis: Introduction to sentiment analysis, Document-level sentiment analysis, Sentence-level sentiment analysis, Aspect-based sentiment analysis, Comparative sentiment analysis, baseline algorithm, Lexicons, Corpora, Tools of Sentiment analysis, Applications.

Laboratory Work: In Laboratory Assignments students can learn search engines and common open-source software to perform common methods of exploratory and predictive analysis and apply text analysis techniques discussed in class to solve problems of data analysis.

Recommended Books

- 1. ButcherS., Clarke C.L.A., Cormack G. Information Retrieval, MIT (1964), 2nd ed.
- 2. Bates M.J., Understanding Information Retrieval Systems, CRC press (2010), 3rd ed.
- 3. <u>Manning C.D., Raghavan P. and Schütze H. Introduction to Information Retrieval, Cambridge University Press (2008), 1sted.</u>
- 4. Baeza-Yates R., Ribeiro-Neto B., Modern Information Retrieval, Addison-Wesley (1999), 1st ed.