
MCA509 COMPILER CONSTRUCTION

L T P Cr

3 0 2 4.0

Course Objective: Gain the working knowledge of the major phases of compilation.

Develop the ability to use formal attributed grammars for specifying the syntax and

semantics of programming languages. Learn about function and complexities of modern

compilers and design a significant portion of a compiler.

Introduction to compiling: Compilers, Analysis of the source program, the phases of

Compiler, Compilation and Interpretation, Bootstrapping and Cross compiler.

Lexical Analysis: Need of Lexical analyzer, Tokens and regular expressions, Generation

of lexical analyzer from DFA, Introduction to LEX and program writing in LEX.

Syntax Analysis: Need for syntax analysis and its scope, Context free grammar, Top down

parsing, bottom up parsing, backtracking and their automatic generation, LL(1) Parser, LR

Parser, LR(0) items, SLR(1), LALR(1), Canonical Parsing, Introduction to YACC and

Integration with LEX.

Error Analysis: Introduction to error analysis, detection, reporting and recovery from

compilation errors, Classification of error-lexical, syntactic and semantic with examples,

Detection of syntactic error in LL and LR parsers, panic mode error recovery and error

recovery in YACC tool.

Static semantics and Intermediate Code generation: Need for various static semantic

analyses in declaration processing, name and scope analysis, S-attribute def. and their

evaluation in different parsing, Semantic analysis through S-attribute grammar, L-attribute

def. and their evaluation.

Run time Environment: Need for runtime memory management, Address resolution of

runtime objects at compile time, Type checking, Language features influencing run time

memory management, Parameter passing mechanism, Division of memory into code, stack,

heap and static, Activation record, Dynamic memory management, garbage collection.

Code Generation: Code generation for expressions, Issues in efficient code generation,

Sethi Ullman algorithm, Dynamic programming approach for optimal code generation tree,

Introduction to retarget able code generation, code generation for control structures.

Code Optimization: Need for code optimizations, Local and global optimization, Control

flow analysis, Data flow analysis, performing global optimizations, Graph colouring in

optimization, Live ranges of run time values.

Laboratory work: To implementing concepts of various phases of a compiler in a high

level language. To implement a mini working compiler.

Text Books:

1. Aho A.V., Ullman J. D., Sethi R., Compilers Principles, Techniques and Tools,

Pearson Education, Edition 2
nd

 ,2005

2. John Levine, Tony Mason, Doug Brown, Lex and Yacc, O’Reilly, Edition 2
nd

1992

3. Kenneth C. Louden, Compiler Construction and Practices, Thomson Publication,

Edition 2
nd

, 1997.

4. Dhamdhere, Compiler Construction. Macmillan Publication Edition 2
nd

, 2008

