MCA103 COMPUTER ORGANIZATION AND ARCHITECTURE

L T P Cr 3 1 2 4.5

Course Objective: Focus is on the architecture and organization of the basic computer modules viz control unit, central processing unit, input-output organization and memory unit. Covers basics of computer arithmetic and parallel processing concepts.

Basics of Digital Electronics: Codes, Logic gates, Flip flops, Registers, Counters, Multiplexer, Demultiplexer, Decoder, Encoder.

Register Transfer and Micro operations: Register transfer Language, Register transfer, Bus & memory transfer, Logic micro operations, Shift micro operation.

Basic Computer Organization: Instruction codes, Computer instructions, Timing & control, Instruction Cycles, Memory reference instruction, Input/Output& Interrupts, Complete computer description & design of basic computer.

Control Unit: Hardwired vs. Micro programmed control unit.

Central Processing Unit: General register organization, Stack organization, Instruction format, Data transfer & manipulation, Program control, RISC, CISC.

Computer Arithmetic: Addition & subtraction, Multiplication Algorithms, Division algorithms.

Input-Output Organization: Peripheral devices, I/O interface, Data transfer schemes, Program control, Interrupt, DMA transfer, I/O processor.

Memory Unit: Memory hierarchy, Processor vs. memory speed, High-speed memories, Cache memory, Associative memory, Interleave, Virtual memory, Memory management.

Introduction to Parallel Processing: Pipelining, Characteristics of multiprocessors, Interconnection structures, Interprocessor arbitration, Interprocessor communication & synchronization.

Case Studies: Case studies of some contemporary advanced architecture for processors of families like Intel, AMD, IBM etc./Seminar on State-of the-art technology.

Lab Work : To implement different programs using ARM processor

Recommended Books

- 1. Mano, Morris M., Computer System Architectue, Prentice Hall (1992), 3rd ed.
- 2. Hayes, J.P., Computer Architecture and Organization, McGraw Hill (1998), 3rded.
- 3. Hennessy, J.L., Patterson, D.A, and Goldberg, D., Computer Architecture A Quantitative Approach, Pearson Education Asia (2006), 5thed.

4. Leigh, W.E. and Ali, D.L., System Architecture: software and hardware concepts, South Wester Publishing Co. (2000).